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Preface

If you are interested in learning about group theory in a relaxed, intuitive way, then this

book is for you. I say learning about group theory because this book does not aim to cover
group theory comprehensively. Herein you will find clear, illustrated exposition about the

basics of the subject, which will give you a solid foundation of intuitions, images, and

examples on which you can build with further study.

This book is ideal for a student beginning a first course in group theory. It can be used

in place of a traditional textbook, or as a supplement to one, but its aim is quite different

than that of a traditional text. Most textbooks present the theory of groups using theorems,

proofs, and examples. Their exercises teach you how to make conjectures about groups

and prove or refute them. This book, however, teaches you to know groups. You will
see them, experiment with them, and understand their significance. The mental library of

images and intuitions you gain from reading this book will enable you to appreciate far

better the facts and proofs in a traditional text.

This book is also appropriate for recreational reading. If you want an overview of the

theory of groups, or to learn key principles without going as deep as some upper-level

undergraduate mathematics courses, you can read this book by itself. Only a typical high

school mathematics education is assumed, but you should have a willingness to think

analytically.

My work on this book stems from Group Explorer, a software package I wrote that
creates illustrations for finite groups, and allows the user to interact and experiment

with them. Many of the illustrations in this text were generated with the help of Group
Explorer, and the investigations possible in Group Explorer can help you with some of
this book's exercises.

You do not need Group Explorer to benefit from this book; very few exercises specif-
ically direct you to Group Explorer. But I recommend taking full advantage of hands-on,
interactive learning experiences when they're available; the more involved we are, the

more we tend to learn. Group Explorer is free software, available for all major operating
systems. You can find it online at

http://groupexplorer.sourceforge.net.

ix



\master" | 2011/10/18 | 17:10 | page x | #10
i

i

i

i

i

i

i

i



\master" | 2011/10/18 | 17:10 | page xi | #11
i

i

i

i

i

i

i

i

Contents

Acknowledgments vii

Preface ix

Overview 1

1 What is a group? 3

1.1 A famous toy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Considering the cube . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The study of symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Rules of a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 What do groups look like? 11

2.1 Mapmaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A not-so-famous toy . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Mapping a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Cayley diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 A touch more abstract . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Why study groups? 25

3.1 Groups of symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Groups of actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Groups everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Algebra at last 41

4.1 Where have all the actions gone? . . . . . . . . . . . . . . . . . . . . 41

4.2 Combine, combine, combine . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Multiplication tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 The classic definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



\master" | 2011/10/18 | 17:10 | page xii | #12
i

i

i

i

i

i

i

i

xii Contents

5 Five families 63

5.1 Cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Dihedral groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Symmetric and alternating groups . . . . . . . . . . . . . . . . . . . . 78

5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Subgroups 97

6.1 What multiplication tables say about Cayley diagrams . . . . . . . . . 97

6.2 Seeing subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Revealing subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Lagrange's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Products and quotients 117

7.1 The direct product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Semidirect products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3 Normal subgroups and quotients . . . . . . . . . . . . . . . . . . . . . 132

7.4 Normalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.5 Conjugacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 The power of homomorphisms 157

8.1 Embeddings and quotient maps . . . . . . . . . . . . . . . . . . . . . 157
8.2 The Fundamental Homomorphism Theorem . . . . . . . . . . . . . . . 167

8.3 Modular arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.4 Direct products and relatively prime numbers . . . . . . . . . . . . . . 172

8.5 The Fundamental Theorem of Abelian Groups . . . . . . . . . . . . . 175

8.6 Semidirect products revisited . . . . . . . . . . . . . . . . . . . . . . . 177

8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9 Sylow theory 193

9.1 Group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.2 Approaching Sylow: Cauchy's Theorem . . . . . . . . . . . . . . . . . 199

9.3 p-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.4 Sylow Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10 Galois theory 221

10.1 The big question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.2 More big questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10.3 Visualizing field extensions . . . . . . . . . . . . . . . . . . . . . . . . 228

10.4 Irreducible polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.5 Galois groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.6 The heart of Galois theory . . . . . . . . . . . . . . . . . . . . . . . . 243

10.7 Unsolvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

10.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252



\master" | 2011/10/18 | 17:10 | page xiii | #13
i

i

i

i

i

i

i

i

Contents xiii

A Answers to selected Exercises 261

Bibliography 285

Index of Symbols Used 287

Index 289

About the Author 297



\master" | 2011/10/18 | 17:10 | page 0 | #14
i

i

i

i

i

i

i

i



\master" | 2011/10/18 | 17:10 | page 1 | #15
i

i

i

i

i

i

i

i

Overview

I highlight here three essential aspects of this book's nonstandard approach to group

theory, and briefly discuss its organization.

First and foremost, images and visual examples are the heart of this book. There are

more than 300 images, an average of more than one per page. The most used visualiza-

tion tool is Cayley diagrams (defined in Chapter 2) because they represent group structure

clearly and faithfully. But multiplication tables and objects with symmetry also appear

regularly, and to a lesser extent cycle graphs, Hasse diagrams, action diagrams, homomor-

phism diagrams, and more. As you can tell by flipping through the pages, visualization

is the name of the game.

Second, I focus more on finite groups than on infinite ones. This is partially because

they are easier to diagram, but more so because they give a solid foundation of intuition

for group theory in general. Understanding finite groups well makes the infinite a natural

generalization. This approach sacrifices little, if anything, because so much remains to

study in the realm of the finite. I cover the most common infinite groups, and each

chapter's exercises includes some on infinite groups.

Lastly, this book approaches groups from the opposite direction of many traditional

textbooks. The usual paradigm defines a group as a set with a binary operation, and later

proves Cayley's Theorem, that every group is a collection of permutations (or you could

say that every group acts on some set, most notably itself). The traditional definition does

not appear in this book until Chapter 4; I define groups in Chapter 1 as collections of

actions, and later prove that they can also be thought of as sets with binary operations.

This nonstandard paradigm facilitates my introduction in Chapter 2 of Cayley diagrams,

which depict groups as collections of actions.

The book's structure is linear, to be read in order; later sections usually depend on

earlier ones. There are two exceptions. Chapter 5, which gives broad exposure to finite

groups, is helpful but not strictly necessary for what follows. You could skip most of it

(except the definition of abelian in Section 5.2) and turn back to it later as needed. The

other exception is that Chapter 10 depends only slightly on Chapter 9; Cauchy's Theorem

from Section 9.2 is used in Section 10.7, and the remainder of Chapter 9 may be useful

in a few of the exercises in Chapter 10.

1
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2 Overview

Chapter 10, on Galois theory, aims to show the power of group theory and some of

its historical roots. It includes an introduction to fields, but several theorems are stated

without proof. It gives enough understanding to see how group theory ties in, and points

the reader elsewhere for more details on fields. The beautiful and historic result of the

unsolvability of the quintic is the focus and endpoint of that final chapter.
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What is a group?

1.1 A famous toy

In 1974, Ern�o Rubik of Budapest, Hungary unleashed his fascinating invention called

Rubik's Cube. It infiltrated popular culture, appearing in feature films, inspiring competi-

tions, and captivating children and geniuses alike. Mathematics journals carried research

articles analyzing the cube and its patterns. Those unable to solve the cube could learn

solutions from any of dozens of books.

A new Rubik's Cube comes out of the box looking like Figure 1.1. Each face of the

cube contains nine smaller faces of smaller cubes, with the colors arranged to agree. You

begin playing with the cube by rotating its faces to mix up the colors. Figure 1.2 shows

how two different rotations in succession begin to disorder the cube. After playing with

a cube idly for a few minutes, an innocent customer finds that the colors are completely

shuffled, and there is no obvious way of returning to the original, pristine state. The

challenge of Rubik's Cube is to restore a scrambled cube to its original state.

Rubik's Cube has a unique flavor among puzzles and games, and much of this flavor

comes from the mathematical patterns inherent in the cube itself. At first the cube may

Figure 1.1. An untouched Rubik's Cube

3



\master" | 2011/10/18 | 17:10 | page 4 | #18
i

i

i

i

i

i

i

i

4 1. What is a group?

Figure 1.2. The leftmost cube shows the green face rotating 90 degrees clockwise; the next cube
shows the result of that move. The third cube shows the white face rotating 90 degrees clockwise;

the final cube shows the result of that move.

not seem very mathematical, given that it doesn't seem to require any skill with numbers,

equations, or quantities in order to play with it, or even to solve it. But that is because

the mathematics covered in this book, group theory, is not primarily about numbers; it is

about patterns. Group theory studies symmetry, which can be found not only in the cube

itself, but also in the patterns of its movements.

Marketing slogans like \Easy to learn, a challenge to master" adorned several puzzles

invented by Ern�o Rubik. This tagline certainly describes the cube, and we can get an

excellent start to our group theory studies by examining why this is so. In this chapter

we will examine those aspects of the cube that make it easy to learn and in Chapter 2 we

will look at what makes it a challenge to master.

1.2 Considering the cube

To explore why Rubik's Cube is easy to learn, let's make several observations.

In part, the cube is easy to play with because users don't need to learn a complex

list of rules. In contrast, players wanting to play chess must first learn the different rules

for each piece. Furthermore, some of the available moves may become unavailable to

the player as the game progresses. Rubik's Cube does not have this type of intricacy;

we might even say it has only six moves|rotating any one of the six faces 90 degrees

clockwise.1 By combining these six moves, players can explore the full (enormous) gamut

of cube configurations. This accessibility leads us to our first observation about the cube.

Observation 1.1. There is a predefined list of moves that never changes.

Another agreeable aspect of Rubik's Cube is that it is somewhat forgiving of mistakes.

If a player rotates a face and immediately regrets the move, no great harm has been done.

The player can simply rotate the face the other way to undo the mistake. Let us make

this our second observation.

Observation 1.2. Every move is reversible.

Another helpful aspect of the cube is a bit less noticeable, but becomes clearer in

contrast with other games: Rubik's Cube is not a game of chance. A tennis player may

have every intention of hitting a great shot, but fail to do so because their body does not

execute their wishes. A poker player may have an excellent strategy, but not win because of

the cards they were dealt. Unpredictability and chance give a certain flavor to a game, and

1Although a player can also rotate faces 90 degrees counterclockwise, that movement is the same as three

sequential 90 degree turns clockwise.
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1.3. The study of symmetry 5

Rubik's Cube is devoid of that flavor. The turning of a face of the cube has a predictable

outcome, depending on neither skill nor luck. An action whose outcome can be determined

in advance, free from influences that are random or uncertain, is called deterministic.

Observation 1.3. Every move is deterministic.

But we must be fair. On their own, these observations seem to imply that the cube

has no complexity. To give an accurate account, we must admit that the seemingly limit-

less combinations of moves make the cube challenging. Thus we balance our first three

observations with one more.

Observation 1.4. Moves can be combined in any sequence.

Note the impact of Observation 1.2 on Observation 1.4. If a player were so meticulous

as to write down carefully every move that he or she did, then even a long sequence of

moves could be carefully reversed one at a time.

1.3 The study of symmetry

We could add many other observations to the four above. We could mention the colors of

the faces, the physical construction of the cube, the number of moves it typically takes to

arrive at a solution, or any other aspect of the puzzle or the experience of playing with

it. But we will concentrate on the four above because they highlight those aspects of the

cube that are most relevant to this book. Group theory is the study of symmetry, and we

will see how Observations 1.1 through 1.4 describe the symmetry in Rubik's Cube.

All cubes are symmetrical in that they have all sides the same, all angles the same,

and all edges the same. But Rubik's Cube has the added intricacy of its moving parts.

The set of possible motions and configurations of the smaller cubes that make up the

whole also has a great deal of symmetry. But to clearly explain this, we need to know

what \symmetry" means.

This brings us to the gateway of this book, because group theory is the branch of math-

ematics that answers the question, \What is symmetry?" The first three chapters of this

book give a careful answer to that question by introducing groups and showing how

they describe symmetry. That introduction is already underway|Rubik's Cube is the first

example we will see of objects and patterns that exhibit symmetry. As we analyze them, we

will be learning group theory. Our explorations in future chapters will lead us to other prac-

tical examples of symmetry, including ones as diverse as molecular crystals and dancing.

But we will not limit ourselves only to seeing examples of symmetrical objects. Our

investigations will use many other tools as well; the purpose of this book is to focus on

tools that are visual. This includes common group theory tools such as the multiplication
table as well as less common ones such as Cayley diagrams and cycle graphs. I will

introduce each of these in chapters to come.

Beginning in Chapter 2, you will see examples of objects that have symmetry. Some

of them are physical objects, some of them are actions or behaviors of physical objects,

and some of them are purely imaginary situations. But what they have in common is that

Observations 1.1 through 1.4 apply to all of them. Group theory studies the mathematical

consequences of those observations, and therefore can help answer interesting questions

about symmetrical objects. For instance, how many different configurations does Rubik's
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6 1. What is a group?

Cube have? Although we will not do the computation of that number in this book,

interested readers can refer to [21].

1.4 Rules of a group

Let's therefore return to those observations on which group theory is founded. But instead

of considering them as descriptions of Rubik's Cube, let's rephrase them as rules that will

define the boundaries of our study. This is how mathematical subject areas are typically

introduced. A set of rules is laid down, then mathematicians proceed to study things that

obey those rules. The mathematical term for such rules is axioms, but I will call them
rules as long as our discussion remains informal.

Laying down such rules has some noteworthy advantages. First, they make the bound-

aries of our study clear. Things that fit the rules introduced below are part of the study of

group theory, and things that don't are not. Second, by agreeing on the rules in advance

as a mathematical community, we can ensure that we all have the same ideas when we

discuss the subject. In other words, codifying our ideas into rules helps us be sure we

are speaking the same language and minimizes communication problems. Third, we can

use the rules as a basis from which to make logical deductions, and thereby unearth new

facts (in our case, facts about symmetry) that we may not have anticipated from the rules

alone. The computation mentioned above about Rubik's Cube depends on just such facts.

You will do some of these deductions yourself in the exercises for this chapter.

So let us rephrase the observations about Rubik's Cube into rules. As mentioned
above, think of these rules as the requirements that something must meet to belong in our

study of symmetry.

Rule 1.5. There is a predefined list of actions that never changes.
Rule 1.6. Every action is reversible.
Rule 1.7. Every action is deterministic.
Rule 1.8. Any sequence of consecutive actions is also an action.
My rephrasing involved making only two changes. First, I changed the word move to

the word action to make it sound less like a game. In the Rubik's Cube context, the former
wording was appropriate, but we do not want to restrict our attention only to games.

Second, when writing Rule 1.8, I rephrased Observation 1.4 to make the terminology

clearer; not only is every sequence of actions possible, but we will go so far as to call

every sequence an action in its own right. This does not mean that such an action has

to appear on the list required by Rule 1.5, but rather that the (usually short) list in Rule

1.5 is a starting point from which we can create new actions using Rule 1.8, that is, by

chaining actions together into sequences.

In the case of Rubik's Cube, although I list only six basic actions, you can form

many actions by combining these six. As a simple example, combining two 90-degree

rotations of the front face in sequence creates a new action, a 180-degree rotation of the

front face. More complicated examples can be created from sequences of three or four or

more different basic actions chained together. The standard way to say this is that Rule

1.5 gives us actions that generate all the others, and are therefore called generators.
We are now ready for our first definition, which marks your passage into the study

of group theory. This is not the usual mathematical definition of a group, but it expresses
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1.5. Exercises 7

the same idea as the usual one, as we will see later. For now, let's call this our unofficial

definition.

Definition 1.9 (group, unofficially). A group is a system or collection of actions satis-
fying Rules 1.5 through 1.8.

You may now be wondering what things besides Rubik's Cube fit this definition.What

other things deserve to be called groups? As we will see in Chapters 2 and 3, anything in

which symmetry arises will satisfy Rules 1.5 through 1.8, including important examples

from science, art, and mathematics. But for now, the following exercises will allow you

to play with the rules themselves a bit, and see a few simple contexts in which they apply.

They will give you a firmer grasp on the meaning of the rules before we proceed.

1.5 Exercises

The following exercises are thought experiments to help you understand the concepts

just discussed. With mathematics and similar scientific endeavors, the exercises usually

require some thought, and therefore take more time than the reading itself. Although you

can appreciate the material with a quick reading, you can know it intimately only with

lengthier consideration. Therefore, do not be discouraged if the exercises take some time;

this is normal.

Also, feel no shame looking up the answers to a few exercises in the Appendix to get

the idea for how to complete them. Because these are not typical mathematical exercises,

they may seem unfamiliar or strange. Therefore looking up an answer or two to get the

hang of them is a reasonable strategy.

1.5.1 Satisfying the rules

Exercise 1.1. Place a penny and a nickel side by side on a table or desk. Consider just

one action, the action of swapping the places of the two coins. Is this a group? (Check

each of the four rules to see if they are true for this situation. Explain your conclusion.)

Exercise 1.2. Consider the same situation as in Exercise 1.1, but add a dime to the right

of the other two coins. The only action is still that of swapping the places of the penny

and nickel. Is this a group?

Exercise 1.3. Imagine that you have five marbles in your left pocket. Consider two

actions, moving a marble from your left pocket into your right pocket and moving a

marble from your right pocket into your left pocket. Is this a group?

Exercise 1.4. Three walls in your bedroom hold pieces of art, one hung on each wall.

You are rearranging them to see which arrangement best suits your taste. You cannot use

the fourth wall, because it has a window.

(a) Count the number of ways there are to rearrange the pictures, as long as only one is

hung on each wall.

(b) Consider two actions: You may swap the art on the left wall with the art on the center

wall, and you may swap the art on the center wall with the art on the right wall. Can

these two actions alone generate all of the configurations you counted?
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8 1. What is a group?

(c) Does part (b) describe a group? If not, what rule or rules were broken?

(d) Now add a new action, moving all art from the right wall to the center wall, even if

this causes there to be more than one piece of art there. Is this new situation a group?

If not, what rule or rules were broken?

1.5.2 Consequences of the rules

Exercise 1.5. Does Rule 1.8 imply that every group must contain infinitelymany actions?

Explain your reasoning carefully.

Exercise 1.6. For each of Exercises 1.1 through 1.4 that actually described a group,

determine exactly how many actions there are in that group. That is, do not count only

the generators, but all possible actions obtainable using Rule 1.8.

Exercise 1.7. Consider again the situation from Exercise 1.1.

(a) Only one action was given. By Rule 1.8, performing this action twice in a row is also

a valid action. Describe it.

(b) Will every group have an action like this? Explain your reasoning carefully.

Exercise 1.8. For each of the following requirements (a) through (e), devise a group

that meets that requirement. (Groups always satisfy Rules 1.5 through 1.8; the require-

ments below are additional ones just for this exercise.) If some groups you've already

encountered fit these requirements, you may feel free to reuse them.

(a) The order in which actions are performed impacts the outcome.

(b) The order in which actions are performed does not impact the outcome.

(c) There are exactly three actions.

(d) There are exactly four actions.

(e) There are infinitely many actions.

Exercise 1.9. Can you devise a plan for creating a group with any given number of

actions? (I do not mean a plan for creating a group with a specified number of generators,

but rather a specified number of actions, once Rule 1.8 has been applied.)

1.5.3 Breaking the rules

Rules 1.6 through 1.8 would not make much sense without Rule 1.5, because it introduces

the notion of a list of actions. But for each of the other rules, we can ask what it would

be like if that rule were not present.

Devising a context in which all but one of the four rules is true shows something

significant|that the missing rule is not redundant. For instance, let's say someone sug-

gested to you that Rule 1.8 could be dropped, because the combination of the other three

rules implies that Rule 1.8 must be true. By finding a context in which the other three

rules are true, but Rule 1.8 is false, you can prove that the combination of Rules 1.5, 1.6,

and 1.7 does not imply the truth of Rule 1.8. Thus by doing Exercises 1.10 through 1.12,

you will have shown that all the rules are necessary; that is, none are redundant.
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1.5. Exercises 9

Exercise 1.10. Devise a situation that satisfies all of the four rules except Rule 1.6.

Exercise 1.11. Devise a situation that satisfies all of the four rules except Rule 1.7.

Exercise 1.12. Devise a situation that satisfies all of the four rules except Rule 1.8.

1.5.4 Groups of numbers

Since group theory is a mathematical subject, it should not surprise us that numbers can

be formed into groups, in various ways.

Exercise 1.13. Pick any whole number and consider this set of actions: adding any

whole number to the one you chose. This is an infinite set of actions; we might name

them things like \add 1" and \add �17." Is it a group? If so, how small a set of generators
can you find?

Exercise 1.14.

(a) What would be the answer to the previous exercise if we allowed only even numbers?

(b) What would be the answer to the previous exercise if we allowed only whole numbers

from 0 to 10?

(c) What would be the answer to the previous exercise if we allowed all whole numbers,

but changed the set of actions to multiplying by any whole number? (I do not ask
you to consider those actions as generators, but as the complete set of actions.)

(d) What would be the answer to the previous exercise if we allowed only the numbers

1 and �1, and just two actions, multiplying by either 1 or �1?
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2
What do groups look like?

2.1 Mapmaking

Chapter 1 introduced group theory by examining those properties of Rubik's Cube that

make it attractive to beginners. Let us now investigate those aspects of the cube that make

it difficult to solve.

When you have in your hands an unsolved Rubik's Cube, and you do not know a

method for solving it, experimentally twisting the faces quickly begins to seem pointless.

You are wandering aimlessly through the multitude of possible configurations of the cube.

Somewhere in this enormous wilderness of jumbled cube configurations is the one oasis

you want to find|the solved cube. But without any idea of where you are, where the

oasis is, or what direction you're walking as you make moves, the situation is (almost)

completely hopeless.

What would be very helpful to someone lost in the endless reaches of Rubik's wilder-

ness is a map|a reference that could say, \You are here," and \The solution is over here,"

and show you the path to get there. Such a map would eliminate all your navigational

problems. Anyone could solve the cube quickly with such a map (although it may not be

much fun to do so).

Many books on Rubik's Cube teach solution techniques, and some academic papers

use group theory to provide detailed analyses of the cube [21]. My purpose is not to

duplicate their efforts here by providing you with a map of Rubik's wilderness. Instead, I

want to conduct a thought experiment about what a fully detailed map of that wilderness

would be like. Such a map is not just a technique for getting to the solved state, but a

complete map of every configuration of the cube and how those configurations relate to
one another. Since all this information will obviously not fit on an ordinary-sized map,

let's say we'll put it in a big book. Because this is only a thought experiment, let's call

our book The Big Book, and consider what this book will need to contain.
Imagine that you have both a jumbled Rubik's Cube and a copy of The Big Book.

The Big Book should first help you determine where you are in the wilderness. To make

11
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12 2. What do groups look like?

this possible, let's organize The Big Book to have one cube configuration on each page,
and let's order the pages in a dictionary-like way. Just as all the words starting with \a"

in the dictionary are together, perhaps all cubes with a red sticker on the leftmost square

of their top face would be together. Within that group of cubes, another sticker's color

would organize, like the second letter of a dictionary word, and so on. The details of such

an organization are not important, because this is only a thought experiment, after all.

Let's agree that we could come up with such an organization if necessary, enabling the

readers of The Big Book to look up their jumbled cubes in the book (with a good dose
of patience and care).

Now let's say you have found the page in The Big Book showing your cube's config-
uration. That page should provide some navigational help, the details of which are best

shown by an example. Figure 2.1 shows a page from The Big Book. The page shows all
faces of a certain cube configuration, front and back, and tells the reader how far that

cube is from being solved. A table then provides navigational help; it tells the reader

what each available move would accomplish. For instance, the first row of the table tells

us that twisting the front face of the cube clockwise would result in the configuration on

page 36; 131; 793; 510; 312; 058; 964 of the book, which is closer to the solution than the

configuration shown on the current page.

You can see how you could use such a book to solve your cube. Once you have

found the page on which your cube is shown, simply make a move that puts you closer

to being solved, and turn to the corresponding page. Then repeat the process from there.

You always know how far you are from the solution, and you can always compare your

cube against the picture on the page to be sure you haven't made a navigational error.

The Big Book has one significant problem, which you may have already noticed from
Figure 2.1. Rubik's Cube has more than 4 � 1019 potential configurations, which would

make a prohibitively large book. We might suggest putting more than one cube state per

page, but in fact even if we could fit one cube state in a square inch, the amount of paper

needed to print the book would cover the surface of the earth many times over. Storing

the book electronically won't help either; even using a very efficient encoding scheme, no

computer in existence at the time of this writing has sufficient storage to contain it.1 So

The Big Book is a thought experiment only, but the remainder of this chapter will show
how valuable a thought experiment it has been.

The most important thing for The Big Book to teach us is that a map of Rubik's
wilderness is really a map of a particular group. Let me explain. The moves in Rubik's

Cube form a group because they satisfy Definition 1.9. (In fact, those moves were our

first example of a group, motivating that very definition.) The rules in Definition 1.9

refer only to the cube's moves, and combinations thereof. Because The Big Book contains
complete data on the moves in Rubik's Cube and how they combine, it is a map of the
group constituted by those combinations.
So the mapmaking ideas introduced by our discussion about The Big Book do not

need to be abandoned simply because the group exhibited by Rubik's Cube is too large.

We can use the same ideas to map out any group, and in the next section we do just that.

1To store only the data (from which to later reconstruct text and images) would require approximately 1021

bytes, or one billion terabytes.
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2.1. Mapmaking 13

Page 12; 574; 839; 257; 438; 957; 431

Cube front Cube back

You are 15 steps from the solution.

Face Direction Destination page Progress

Front Clockwise 36; 131; 793; 510;312; 058;964 Closer to solved

Front Counterclockwise 12; 374; 790; 983; 135; 543;959 Farther from solved

Back Clockwise 26; 852; 265; 690; 987;257;727 Closer to solved

Back Counterclockwise 41; 528; 397;002; 624; 663;056 Farther from solved

Left Clockwise 6; 250; 961; 334; 888; 779;935 Closer to solved

Left Counterclockwise 10; 986; 196; 967;552; 472; 974 Farther from solved

Right Clockwise 26; 342; 598; 151;967; 155;423 Farther from solved

Right Counterclockwise 40; 126;637; 877;673; 696;987 Closer to solved

Top Clockwise 35; 275; 154; 257;268; 472; 234 Closer to solved

Top Counterclockwise 33; 478;478; 689; 143; 786;858 Farther from solved

Bottom Clockwise 20; 625; 256; 145;628; 342; 363 Farther from solved

Bottom Counterclockwise 7; 978; 947;168; 773; 308;005 Closer to solved

Figure 2.1. Sample page from The Big Book
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14 2. What do groups look like?

2.2 A not-so-famous toy

Allow me to introduce you to a puzzle much like Rubik's Cube. This puzzle has been

around much longer, but has a much less impressive name. It is called the rectangle, and
I'm sure you've heard of it before! Even though nearly everyone's mathematical education

includes rectangles at some early point, I provide a useful illustration in Figure 2.2, with

the corners of the rectangle conveniently numbered. The first thing to notice about this

puzzle is that it is much less complicated than Rubik's Cube, and so it might cooperate

better with our mapmaking aspirations.

1 2

3 4

Figure 2.2. A rectangle with its corners numbered

But first, to fully benefit from the upcoming discussion of the rectangle, you should

make one for yourself. Take an ordinary sheet of paper and label it with numbers in the

corners as shown in Figure 2.2. Making your own rectangle may sound unnecessary, but

we will be investigating flips and twists of this object in space, which are difficult to

picture accurately with the mind's eye alone. So go ahead and grab a piece of paper and

make your own personal (numbered) rectangle.

Here are the rules for the rectangle puzzle. Begin with the rectangle flat on a table,

on a desk, or in your lap so that you can read the four numbers, as in Figure 2.2. Like the

Rubik's Cube, the rectangle puzzle starts out in its solved state|the way you have it now.

You will mix up the puzzle and your job will then be to return it to this original state.

The rectangle puzzle has two legal moves. You can flip the paper over horizontally

and you can flip it over vertically, as shown in Figure 2.3.2 In Chapter 3 I'll talk about

1

3 4

1

3

3 4
1 2

3

=

=

1 2
4

4

22

Figure 2.3. The top arrow illustrates a horizontal flip; the upper right rectangle shows the result
of such a flip. The bottom arrow illustrates a vertical flip; the lower right rectangle shows the result

of such a flip.

2 Readers familiar with axes of rotation may consider the naming convention in Figure2.3 backwards. Because I

have not yet introduced axes of rotation, I use a simpler naming convention. \Horizontal" and \vertical" describe

the motion of the player's hands, which follow the arrows in Figure 2.3.
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2.3. Mapping a group 15

why these moves (and not others) make sense for the rectangle puzzle, but for now, let's

just call them the rules of the game. As with Rubik's Cube, you may feel free to repeat

and combine moves as much as you like. (In fact, you may have already noticed that the

moves in the rectangle puzzle form a group.)

Take a moment now to mix up your rectangle puzzle, and then solve it. This should

not take very long, but be sure you do not (accidentally) cheat! A natural mistake is to

pick up the rectangle and inspect it a bit, rotating it freely and experimentally until it

is solved. This move is rarely valid, and thus is not what you're supposed to be doing.

Making such a move is analogous to disassembling Rubik's Cube and reassembling it

solved. Remember that you are limited to the two moves in Figure 2.3 as you mix up the

puzzle and as you solve it.
Let's take a moment to verify that the moves in the rectangle puzzle form a group, and

to compare it to Rubik's Cube. Rule 1.5 requires a predefined list of moves, which we

have given: horizontal and vertical flips. Rule 1.6 requires that each move be reversible. It

holds true for the rectangle because in fact each move undoes itself. For example, if you

have performed a horizontal flip and wish to return to the previous state, simply perform

another horizontal flip. The same is true of vertical flips. Rule 1.7 requires that these moves

be deterministic, free from randomness, and they are because they are completely within

your control. Rule 1.8 requires that any possible combination of moves also be a valid

move. This rule is satisfied because a horizontal or vertical flip puts the rectangle into a

physical position from which either valid move is still possible. In contrast, if we were to

add the move \rip up the rectangle and throw it away," that would bring about a dead end;

no subsequent moves would be possible. Neither of our two moves has this problem; they

always permit further moves and thus allow us to string them together in any sequence.

In the next section we will map out the rectangle puzzle's group. But first, notice

how its physical construction contrasts with that of Rubik's Cube. The rectangle puzzle

requires you to place the rectangle on a flat surface, to remember its original orientation,

and to try to return to it. Rubik's Cube is not this way; you can toss it around the

room, drop it in your sock drawer, and when you come back to it, its configuration will

not have changed. The cube's moving parts internalize the puzzle, so that no external

reference (to a table, or an original orientation) is required. Because the rectangle puzzle

is a simple do-it-yourself rectangle made of paper, it has no moving parts and thus to

use it as a puzzle required external landmarks (the table and the original orientation you

remembered). We could design a puzzle that behaves identically to the rectangle puzzle,

but which is self-contained; it would just not be as easy to make at home.

2.3 Mapping a group

Mapmaking begins with exploration. We need to know the lay of the land if we are to draw

a useful map of it. Let's therefore explore the realm of the rectangle puzzle, and map it out

as we go. We will need to ensure that our exploration is thorough|that we find all possible

configurations of the rectangle puzzle|so we should conduct our search systematically.

Begin with the rectangle puzzle in its solved state (Figure 2.2). Our two moves

(horizontal and vertical flips) are our only means for exploring. They are the group's

generators, and our map will show how they generate the group.
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16 2. What do groups look like?

Start exploring by performing a horizontal flip. Because our exploration has just

begun, this of course leads us to a configuration we have not yet mapped. But it is a

configuration that was originally introduced in Figure 2.3. Performing another horizontal

flip returns the rectangle to its original, solved state. Therefore let's begin making our

map with this information. Figure 2.4 shows a map of the terrain we have explored so far.

I use a two-way arrow to mean that from either of the two configurations in the figure,

a horizontal flip leads to the other configuration.

1 2

3 4

12

34

flip horizontally

Figure 2.4. Partial map of the configurations of the rectangle puzzle, using only horizontal flips

These configurations are as far as we can go with horizontal flips alone. Keeping

with the exploration metaphor, we can say that we have found two places in the rectangle

realm. From each of these places, the map in Figure 2.4 tells us where a horizontal flip

will take us, but there is (so far) no information about where vertical flips lead. Our map

is not complete without such information, and so we must explore further.

Let's return to the rectangle in its solved state, and explore the results of vertical flips.

Figure 2.3 already tells us what vertical flips do, but let's be thorough and explore those

states as we add them to our map. From the solved state, a vertical flip leads to a new

state we have not yet visited, and from there a vertical flip returns the rectangle to the

solved state. We augment our map as shown in Figure 2.5.

Our map is still not complete, because we have not yet recorded where a vertical flip

leads from the upper right configuration in Figure 2.5. To explore from that configuration,

we first need to get our rectangle in that configuration. If you've been following along with

your own rectangle, we left it in the solved state, and can get to the upper right configu-

ration from Figure 2.5 by doing a horizontal flip|that's what our map tells us! After

that horizontal flip, we perform a vertical flip to see where it leads. This move is the first

exploration we've done whose outcome we could not predict from Figure 2.3. Perform

this move yourself and see where it leads. Does it lead to a new location we must add to

our map, or to a location we've already been? (You'll find the answer in Figure 2.6.)

Figure 2.6 contains four states of the rectangle, but the lower two have no \horizontal

flip" arrows leading to or from them. Therefore our map is still incomplete. For instance,

if your rectangle is like the lower left one in Figure 2.6, where does a horizontal flip lead

you? The map does not say; we still have work to do.

Use the map to get your rectangle to look like the lower left rectangle in Figure 2.6,

then perform a horizontal flip and see what configuration results. It is not a new config-

uration; it is the same one you discovered moments ago. Performing another horizontal

flip will, of course, get you back to the lower left rectangle from Figure 2.6. The final

map for the rectangle puzzle then looks like Figure 2.7. We can tell that our explorations

are complete because there are no unanswered questions. From every location, it is clear

from the map where every given move leads.
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Figure 2.5. Partial map of the configurations of the rectangle puzzle, exploring from the solved
state using one type of move at a time

1 2

3 4

12

34

1 2

3 4 34

12

flip horizontally

fl
ip

 v
er

ti
ca

ll
y

fl
ip

 v
er

ti
ca

ll
y

Figure 2.6. Partial map of the configurations of the rectangle puzzle, continuing to explore from
Figure 2.5. The lower right state shown in this map does not appear in Figure 2.3.
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18 2. What do groups look like?

Figure 2.7. Full map of the configurations of the rectangle puzzle

You have just created your first map of a group! We have to admit that the map in

Figure 2.7 is a bit unnecessary, because the rectangle puzzle is easy to solve without a

map. But the map does serve to show us exactly the structure of the rectangle puzzle,

and to let us see why it is easy. (For instance, from the map, you can see that alternating

horizontal and vertical flips will walk you through every location in the rectangle realm.)

The map we made is also an excellent first example of how to map a group, and allows

us get our feet wet before we come upon more complicated groups.

2.4 Cayley diagrams

Maps like Figure 2.7 are called Cayley diagrams, after their inventor, Arthur Cayley,
a nineteenth century British mathematician. We will use Cayley diagrams extensively

throughout this book; they can be very potent visualization tools. It will help to begin by

noting some important facts about the Cayley diagram we just made. These facts may

seem obvious or uninteresting as far as they apply to the rectangle puzzle, because it

is a puzzle that is so easy to solve. But we will be making Cayley diagrams for more

complicated groups, and these facts will remain true.

The map in Figure 2.7 allows us to get from any place in the rectangle realm to any

other without any guesswork. For instance, suppose you wanted to get from the lower

right configuration to the solved configuration. From the map, you can see that there are

two different (short) paths you could follow (up and then left or left and then up). To

make use of the map, as you trace either of these paths on the map with your finger

or your eyes, obey the instructions on that path using your rectangle. Going up from the

lower right configuration, flip your rectangle vertically; then going left, flip it horizontally.

Doing so successfully navigates to your desired destination; the map could help you plan

and execute any such journey.
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2.5. A touch more abstract 19

Recall also that we took pains to ensure that the map in Figure 2.7 is comprehensive.

There is no location in the rectangle realm that does not appear on the map. Our con-

struction of the map ensured this. We branched out from the starting position using each

generator, and then branched out from each of those positions using each generator again.

If the puzzle had been more complicated, we could have continued this process further,

exploring farther and wider until we had found every location in the realm. We know

our explorations are incomplete if our map fails to answer a question like \Where does

a horizontal flip take me from this location?" That is, if there is a location on your map

from which you have not yet explored where all moves lead, then your map is incomplete.

When all such questions are answered, the map is complete.

Cayley diagrams have the two important properties just discussed: they clearly show

all possible paths and they include every configuration. Just as the rectangle puzzle has a

map, every other group also has a map with the same two properties. From now on, I will

call such maps by their official name, Cayley diagrams. The most useful aspect of Cayley

diagrams is that they give a clear picture of the structure of a group. Seeing the Cayley

diagram of a group gives a much more immediate and complete idea of the group's size,

complexity, and structure than a simple prose description can. This illustrative power is

why we use them so frequently for learning about groups hereafter.

You can make a Cayley diagram for any group the way we made the one in Figure2.7.

Beginning at any one configuration or situation, explore carefully using each generator,

one at a time. Explore thoroughly and carefully, making a map as you go and labeling

the transitions between states with the moves that cause them. Continue until your map

contains no unanswered questions, as described above. Although Figures 2.4 through

2.7 are laid out nicely, the first time you draw a Cayley diagram it will probably be

disorganized. As you explore a realm for the first time, the Cayley diagram that evolves is

messy because you do not know in advance the simplest way to lay it out. Cayley diagrams

created by exploration need to be reorganized into a more symmetric or aesthetically

pleasing arrangement after the exploration is complete.

The exercises at the end of this chapter encourage you to make a few Cayley diagrams

using this exploratory technique. You will appreciate the previous paragraph more after

some personal involvement with this type of mapmaking. Feel free to jump ahead and do

the first few exercises now, and then return to this point in your reading.

2.5 A touch more abstract

It is important to get to the heart of the mapmaking concepts that we have just learned.

As Definition 1.9 makes clear, what is important about a group is the interactions of its

actions, not the specific situation that gave rise to those actions. Let me illustrate this fact

with an example. Consider two light switches side-by-side on a wall. You are allowed

two actions, flipping the first switch and flipping the second switch. This collection of

(two) actions generates a group; you can check the rules yourself. The map of this group

is shown in Figure 2.8.

You will notice that it has the same structure as the map of the configurations of the
rectangle puzzle from Figure 2.7. The four rectangle configurations have become four

light switch configurations, and the arrows labeled \horizontal flip" and \vertical flip"
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flip switch 1

flip switch 1

fl
ip

 s
w

it
ch

2

fl
ip

 s
w

it
ch

2

Figure 2.8. Full map of the configurations of the two-light switch group

have become arrows labeled \flip switch 1" and \flip switch 2" respectively. But the

arrows connect the configurations in the same pattern as before, making a clear analogy

between Figures 2.7 and 2.8.

So although these two groups are superficially different, they are structurally the

same. The important lesson to learn here is that two different groups may have the same

structure, and that the Cayley diagrams help us see this. Therefore, in order for us to study

groups in the abstract, we wish to remove from our Cayley diagrams the details of the

practical situation from which they were constructed. After all, a group is a mathematical

structure, and mathematicians study groups as abstract (purely mathematical) objects. The

rectangle puzzle and the light switches example just help us anchor our abstract study in

something familiar.

So let's replace each rectangle in Figure 2.7 with something purely meaningless, a spot

we will call a node. And we will replace the two different types of arrows (distinguished
by their labels \horizontal flip" and \vertical flip") with different colored connectors that

have no labels. (In fact, we can simplify even further by removing the arrowheads, since

all arrows point in both directions anyway; I'll still refer to these headless connectors as

\arrows.") The result is Figure 2.9, a Cayley diagram of a group, now shown pure and

without any trappings of the example from which we learned it. You will note that the

structure shown in Figure 2.9 is not only the heart of Figure 2.7, but also that of Figure 2.8.

This group in Figure 2.9 is called the Klein 4-group3. I chose it as our first group to

visualize because it was simple enough for us to map quickly and easily, and yet still have

some interesting structure. Figure 2.10 shows several other Cayley diagrams, to give you

3Also simply called the 4-group, and denoted V or V4 for vierergruppe, \four-group" in German. It is named
for the mathematician Felix Christian Klein.
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Figure 2.9. Cayley diagram of the Klein 4-group

a broader idea of what they tend to look like. As you can see, some are very simple, and

others very complex. This diversity in the diagrams is indicative of a range of complexities

in the underlying groups as well. You should not feel as if you must understand every

part of Figure 2.10 already; it is present as an example of what is to come.

My interest in group theory visualization led me to write Group Explorer, a free
software package that draws Cayley diagrams (and other illustrations you'll learn in

later chapters). Group Explorer is an optional (but helpful) interactive companion to this
book, and you can retrieve it from http://groupexplorer.sourceforge.net.

It provides a list of groups, and extensive information about each one, including at least

one Cayley diagram. Group Explorer creates Cayley diagrams using much the same
algorithm we did|it uses the rules of the group to follow arrows, exploring the realm,

and after it has found every location, it makes an attempt to arrange them presentably.

This chapter taught you your first technique for visualizing groups|the Cayley dia-

gram. We will explore applications of this technique in chapters to come, and will use

it extensively throughout our group theory studies. First, take some time to build your

understanding of Cayley diagrams using the following exercises.

2.6 Exercises

2.6.1 Basics

Exercise 2.1. In the rectangle puzzle, what actions were the generators? What other

actions are there besides the generators?

Exercise 2.2. In the light switch puzzle, what actions were the generators? What other

actions are there besides the generators?

Exercise 2.3. Can an arrow in a Cayley diagram ever connect a node to itself?

2.6.2 Mapmaking

Exercise 2.4. Exercise 1.1 of Chapter 1 defined a group. Create its Cayley diagram

using the technique from this chapter. (Hint: This group is simpler than even those done

so far; the diagram will be small.)

Exercise 2.5. Exercise 1.4 of Chapter 1 defined a group. Create its Cayley diagram

using the technique from this chapter.
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Cyclic group C3 (or Z3) Symmetric group S3
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Quasihedral group with 16 elements Alternating group A5

Figure 2.10. Cayley diagrams of some small, finite groups
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Exercise 2.6. Exercise 1.13 described an infinite group which can be generated with

just one generator. Can you draw an infinite Cayley diagram for it? (Just draw a portion

of the diagram that makes the infinite repeating pattern clear.)

How does that Cayley diagram compare to one for the group in Exercise 1.14 part

(a)?

Exercise 2.7. Exercise 1.14 part (d) described a two-element group. Can you draw a

Cayley diagram for it? Which arrow or arrows should you use and why?

Exercise 2.8. Section 2.2 introduced the rectangle puzzle. Imagine instead a square
puzzle with its corners labeled the same way. Such a puzzle would allow a new move

that was not possible with the rectangle puzzle; you could rotate a quarter-turn clockwise.

(a) Make the map of this group.

(b) Why is the quarter-turn move not \allowed" in the rectangle puzzle?

Exercise 2.9. Most groups can be generated many different ways, and each way gives

rise to a corresponding way to connect a Cayley diagram with arrows. For example,

consider the group V4, which we met in the rectangle puzzle. Let's shorten the names

of its actions to n, h, v and b, meaning (respectively) no action, horizontal flip, vertical

flip, and both (a horizontal flip followed by a vertical flip).

We saw that h and v together generate V4. But it is also true that h and b together

would generate V4, or v and b together. (You can verify these facts by exploring the

rectangle realm using these generators on your own numbered rectangle.)

(a) Make a copy of Figure 2.9 and add to it a new type of arrow, representing the action

b.

(b) Make a copy of your answer to part (a), with the arrows representing h removed.

How does your diagram show that v and b are sufficient to generate V4?

(c) Make a copy of your answer to part (a), with the arrows representing v removed.

How does your diagram show that h and b are sufficient to generate V4?

2.6.3 Going backwards

Exercise 2.10. If you've done all the exercises to this point, you've encountered two

different Cayley diagrams that have the two-node form shown here.

Can you come up with another group whose Cayley diagram has this form?

Exercise 2.11. If you've done all the exercises to this point, you've encountered two

different Cayley diagrams that have the four-node form shown here.
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Can you come up with another group whose Cayley diagram has this form?

Exercise 2.12. We have not yet seen a group whose Cayley diagram has the three-node

form called C3, shown in the top left of Figure 2.10. Can you come up with a group

whose Cayley diagram has that form?

2.6.4 Rules

Exercise 2.13. A group's generators have a special status in a Cayley diagram for the

group. What is that special status?

Exercise 2.14. Chapter 1 required groups to satisfy Rule 1.5, which states, \There is

a predefined list of actions that never changes." How does this rule impact the appear-

ance of Cayley diagrams? (Or how would diagrams be different if this rule were not a

requirement?)

Exercise 2.15. Chapter 1 required groups to satisfy Rule 1.6, which states, \Every action

is reversible." What constraint does this place on the arrows in a Cayley diagram? Can

you draw a diagram that does not fit this constraint? (That is, draw a diagram that almost

deserves the name \Cayley diagram," except for that one rule violation.)

Exercise 2.16. Chapter 1 required groups to satisfy Rule 1.7, which states, \Every action

is deterministic." What constraint does this place on the arrows in a Cayley diagram? Can

you draw a diagram that does not fit this constraint? (That is, draw a diagram that almost

deserves the name \Cayley diagram," except for that one rule violation.)

Exercise 2.17. Chapter 1 required groups to satisfy Rule 1.8, which states, \Any sequence

of consecutive actions is also an action." How do we depend upon this fact when using

a Cayley diagram as a map?

2.6.5 Shapes

Exercise 2.18. If we created an equilateral triangle puzzle, like the square puzzle in

Exercise 2.8, what would the valid moves be? Map the group of such a puzzle.

Exercise 2.19. A regular n-gon is a polygon with n equal sides and n equal angles. You

have already analyzed regular n-gons with n D 3 (equilateral triangle, Exercise 2.18) and

n D 4 (square, Exercise 2.8).

(a) Based on what you know about the cases when n D 3 and n D 4, make a conjecture

about how many actions will be in the group of the regular n-gon for any n > 2.

(b) Test your conjecture by making the map of the group for a regular pentagon (n D 5).

(c) Find the equilateral triangle group, the square group, and the regular pentagon group

in Group Explorer's library. (Hint: Use the search feature.)

(i) Do your Cayley diagrams look like those in Group Explorer?
(ii) Does your conjecture hold up against all the data you can find in Group

Explorer?

(d) Write a paragraph giving as convincing an argument as you can in favor of your

conjecture. Try to anticipate the counterarguments of a skeptical reader.

The groups you studied in this exercise are called dihedral groups.We will return to them
in Exercise 4.9, and then formally study them in Chapter 5.
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Why study groups?

The groups you've seen in this book so far may leave you wondering what the purpose of

group theory is. After all, the things we've studied have little value other than intellectual

amusement|games, puzzles, and imaginary situations like coins on a table. If group

theory were just a collection of intellectual amusements, anyone could be forgiven for

asking, \So what?"

The two chapters we've spent learning the basics have positioned us to learn some of

group theory's more practical applications. This chapter tours a few of those applications,

and provides references to where interested readers can go to explore any of them further.

After this chapter, our study of group theory will get more advanced, and I will return to

choosing examples based on how well they illustrate the material (rather than based on

how useful they are in the real world).

We will see applications of group theory in three different areas: science, art, and

mathematics. Further examples could have been included, but these are a good start.

Woven throughout all the examples you will see the notion of symmetry. After reading
this chapter, you will be well-equipped to identify and classify symmetry in the world

around you. Some of this chapter's exercises will encourage you to spot new objects and

situations to which group theory applies.

3.1 Groups of symmetries

We say something is symmetrical when it looks the same from more than one point of

view. For instance, humans have bilateral symmetry; our left and right sides are similar,

so we look (basically) the same in a mirror as we do face-to-face. Sea stars (starfish) have

pentaradial symmetry; their five alike arms radiate outward, separated by equal angles.

You can turn one a bit and it looks the same after the turn as before. (To be precise, turn

it 72 degrees, one fifth of a full 360 degree rotation.)

How does this relate to groups? The example groups we've looked at so far deal with

arrangements of similar things|the numbered corners of a rectangle, the colored squares

25
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on Rubik's Cube, the several paintings on a room's walls (Exercise 1.4)|and in Chapter

5, we will cover a foundational fact of group theory, that every group can be viewed as

a collection of ways to rearrange some set of things. Groups relate to symmetry because

an object's symmetries can be described using rearrangements of the object's parts. My

example of turning a sea star put each arm in a new location, and is thus a (simple)

rearrangement of the arms.

Mathematicians and scientists use groups to describe the symmetry in physical ob-

jects. The technique for finding a group that describes an object's symmetry has already

appeared in this book; you have seen it used with the rectangle puzzle in Chapter 2 and

tried something similar yourself in Exercises 2.8, 2.18, and 2.19. It's time this technique

had an official introduction. Definition 3.1 describes it thoroughly, and thereafter I explain

why the technique makes sense.

Definition 3.1 (technique for measuring symmetry). The following process extracts from

any physical object a group that describes the symmetry in that object.

1. Identify all the parts of the object that are similar, and give each such part a different

number. (The rectangle had four alike corners, so we numbered them. We could have

instead numbered the four sides, because the left is the same as the right and the top

is the same as the bottom.)

2. Consider the actions that you can perform with your hands that may rearrange the

numbered parts, but that leave the object taking up the same space it did originally.

(If the object is too large or small for your hands, imagine holding a perfectly scaled

model instead.) This collection of actions forms a group.

3. If you want to visualize the group, explore and map it as we did in Chapter 2 with

the rectangle, shown in Figures 2.2 through 2.7.

Reviewing how Chapter 2 applied this technique to the rectangle puzzle should help

clarify this definition. Figure 3.1 does just that.

Let's take a moment to consider this technique so that we can see the logic behind it.

Step 1 of Definition 3.1 numbers the object's parts so that we can track the manipulations

permitted in Step 2. That is, it enables us to distinguish all the object's different states from

one another, and to see how they relate. Note that new each state is a new arrangement of

the object's similar parts, a re-arrangement. The numbering allows us to clearly describe
each of these rearrangements, which would otherwise be indistinguishable from each other.

The heart of the technique lies in Step 2, which gives both freedom and restriction:

You should look for all manipulations of the object provided that it takes up the same
space. The freedom (in fact, the command) to find all manipulations ensures that we get
a complete description of the object's symmetry; to do so may require some exploration,
as it did in the case of the rectangle. The restriction to manipulations that take up no

new space ensures that our exploration pays attention to the object's shape. Recall that

symmetry is not only a set of similar parts, but also their arrangement. (A starfish is

more than just five alike arms in a pile!) The restriction in Step 2 ensures that this whole

technique respects the arrangement of the object's parts.
Step 2 defines a group that describes the symmetry in the original object. Step 3 is

optional, but we perform it in order to see the group, since we are studying group theory
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is to be measured.
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2

A Cayley diagram shows the
symmetry of the original object,
as a group.

The resulting group is the measure of the
original shape’s symmetry. The following
optional step allows us to see that group.

The labeled shape’s various positions are
now distinguishable due to the numbers.

Step 2: Make a group of moves that keep
the object in the same space.

Step 3: Map the group by exploring
all combinations of moves.

Step 1: Number the shape’s alike parts.

flip horizontally

Figure 3.1. In Chapter 2, we applied the technique in Definition 3.1 to the rectangle. A summary
of the steps we took is shown here as an example. Clearer illustrations of the rectangle's valid moves

and its map appear in Figures 2.3 and 2.7, respectively.

visually. Although we have already experienced this technique in Chapter 2 when we

studied the rectangle puzzle, now it is time to employ it for something more useful.

3.1.1 Shapes of molecules

Chemists need to classify the molecules they study by shape, because those shapes impact

the molecules' behavior. They use group theory to do so. This gives us a chance to apply

the technique in Definition 3.1 to something practical. Figure 3.2 represents a molecule of
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Figure 3.2. A molecule of Boric acid, B.OH/3

Boric acid; the red ball is boron, the blue oxygen, and the green hydrogen. Let's measure

its symmetries as a chemist would, and find the group that describes them.

Step 1 of the technique in Definition 3.1 insists that we label the molecule's alike

parts|in the case of Boric acid, this means the three \arms." I have done so in Figure3.3.

1
2

3

Figure 3.3. The same molecule as in Figure 3.2, but now with each of the three identical arms
numbered, to distinguish them, as in Step 1 of Definition 3.1

Step 2 of Definition 3.1 requires us to ask what manipulations of this molecule are

available. As Step 2 instructs, we imagine holding a scale model of the molecule and

twisting it about. One of the first things to notice is that rotating one-third of a full circle

in either direction is a valid move, because the result occupies the same space as the shape

we started with; only the numbering has changed. (To help your mind's eye, see Figure

3.4.) On the other hand, we can find manipulations that are not admissable. For example,

a horizontal flip was legal in the rectangle puzzle (Figure 2.3, page 14), but is not legal

here. Figure 3.5 shows that a horizontal flip results in a shape that sits differently in space

than the original.

=

1
2

3 1

23

Figure 3.4. Rotating the numbered molecule from Figure 3.3 clockwise one-third of a full

rotation rearranges the numbering, but the molecule occupies the same space as before. Thus a

one-third turn is part of the group describing this molecule, as per Definition3.1.
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12

3

=

21

3

Figure 3.5. Flipping the numbered molecule from Figure3.3 over horizontally situates the shape
differently in space. (The arms do not reach in the same directions as originally.) Thus a horizontal

flip is not part of the group describing this molecule, as per Definition3.1.

If we conducted a full exploration of this group, as we did when mapping out the

rectangle puzzle, we would generate a cyclic group with three actions, shown in Figure

3.6. It is satisfyingly natural that a molecule with three prongs like a propeller has a three-

step cyclic symmetry group. The term \cyclic" is not used casually here; it is actually a

technical term, although its meaning should be mostly obvious from Figure 3.6. We will

talk more about cyclic groups in Chapter 5.

1
2

3

1

231

2

3

right     turn right     turn

right     turn

1
3

1
3

1
3

Figure 3.6. A complete map of the group obtained by exploring the symmetry of the labeled

molecule from Figure 3.3. If we make this diagram abstract, as we did when creating Figure 2.9,

we obtain the top left diagram in Figure 2.10, page 22, the cyclic group C3 .

3.1.2 Crystallography

Of course, chemists study more than one molecule at a time. One of the easiest ways

for a chemist to learn about solids at the atomic level is to study solids whose atoms are

naturally well organized. Solids whose atoms arrange themselves in a regular, repeating

pattern are called crystals. The study of them is called crystallography.
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Figure 3.7. One cube from a crystal whose type chemists have named body-centered cubic.
Each white ball represents an atom (of lithium or sodium, for instance) and each line a bond

between atoms. The crystal structure formed by repeating many of these through space is shown in

Figure 3.8.

There are hundreds of three-dimensional crystal patterns, but let us take one example.

The atoms of several common elements (including sodium and lithium, for example)

arrange themselves in a grid of cubes when they form a solid, with an extra atom at the

center of each cube. This is called a body-centered cubic arrangement, and is shown in
Figure 3.7. Many of these cubes together form a crystal, as shown in Figure 3.8. The

cubes sit next to one another, and over and under one another, and in front of and in back

of one another, in all three dimensions, extending indefinitely. Where cubes touch faces,

they share the four atoms of the face between them.

The technique from Definition 3.1 can even be used to classify the symmetry of pat-

terns like this one. I will not do so complex an example here, but most of that complexity

comes from just one aspect of the crystal: that it seems to go on forever. Chemists study-

Figure 3.8. The cube from Figure 3.7 repeated to fill three-dimensional space. The different

colors of the lines have no chemical significance; they make it easier to distinguish the edges of

each cube from the diagonal lines through the cubes' centers.
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ing crystals do indeed treat them as patterns that repeat without end, and thus the groups

describing them are infinite. Perhaps your curiosity is now aroused, and you're wishing

that I would do an example. That's good! Although I do not classify the symmetry of a
crystal, in the following section I give an example of classifying the symmetry of infinite

repeating patterns in one dimension. The interesting aspect of the example remains: How

do we deal with infinite objects, and what are infinite groups like?

The World Wide Web contains excellent resources for further investigation of the

group theory of molecules and crystals. One particular site that helped generate some of

the examples in this chapter is maintained by Jonathan Goss [10].

3.1.3 Art and Architecture

Crystals are patterns that repeat in three dimensions, but we can think of repeated patterns

that are not three-dimensional. Such repeating patterns appear in several areas of art. First,

let's consider simply patterns that repeat in only one direction, along a strip. Perhaps you

have seen such a pattern embroidered on the hem of a piece of clothing, or the edge of

a tablecloth. You may have seen a piece of jewelry composed of the same type of links

chained together. The cornices of some buildings are sculpted in a one-dimensional repeat-

ing pattern called a frieze. Mathematicians have adopted this term, and call all patterns that
repeat in one dimension frieze patterns and the groups that describe them frieze groups.
A simple frieze pattern is shown in Figure 3.9. It may not be intricate or beautiful enough

for you to want on your clothes or your house, but a simple first example is best. Although

Figure 3.9 only shows five leaves, the ellipses at either end of the diagram indicate that

one should imagine the pattern extending infinitely left and right.

… …

Figure 3.9. A frieze pattern, which can be extended indefinitely to the left or right.

Applying the technique from Definition 3.1 to an infinite object will be a new experi-

ence for us. Step 1 of that technique asks us to number all the object's alike parts, which

can be a challenge if there are infinitely many! I number only those parts of the pattern

that are present in Figure 3.9, and use a numbering scheme that makes it obvious how you

could continue numbering in either direction if more of the frieze pattern were drawn. But

what are the alike parts of the pattern, which I must number? It might be tempting to say

that the leaves are the alike parts, but that is only half of the story. Each leaf is also itself

symmetrical, its left side like its right side. So the parts we need to number are actually

both sides of each leaf. Figure 3.10 shows a numbering that starts with 1 at the right side
of the center leaf and counts to the right. In mirror image fashion, it uses negative numbers

to go from the left of the center leaf to the left. If the vine were extended and more leaves

shown in either direction, it is clear how we could continue numbering them.
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–5 –4

–3 –2

–1 1

2 3

4 5

… …

Figure 3.10. The frieze pattern from Figure 3.9, now with all alike parts labeled, as Step 1 of
Definition 3.1 requires.

Step 2 from Definition 3.1 instructs us to find the manipulations of the frieze that rear-

range the numbered parts but keep the shape occupying the same space. One such action

we have seen twice before|a horizontal flip. Just as Figure 2.3 showed that a horizontal

flip is a valid move for the rectangle, and Figure 3.5 showed that it is not a valid

manipulation of an atom of Boric acid, so Figure 3.11 shows that it is a valid move for

this frieze pattern. The second manipulation shown in Figure 3.11 has not yet appeared

in this book; it is called a glide reflection. To perform a glide reflection, move the pattern

to the right and then flip it vertically, as shown by the arrow in that figure. An upper leaf

moves to the right and then flips down to end up where the adjacent lower leaf had been.

–5 –4

–3 –2

–1 1

2 3

4 5

–5 –4

–3 –2

–1 1

2 3

4 5

=

=

5 4

3 2

1 –1

–2 –3

–4 –5

–7 –6

–5 –4

–3 –2

–1 1

2 3

…

…

… …

… … …

…

Figure 3.11. The legal moves for the leaf frieze shape from Figure3.9, according to Step 2 of
Definition 3.1.

This glide reflection is the first time we have had any manipulation that involved

moving an object in any direction. This is because only with an infinite object is it
possible to move it and still have it look the same when the move is completed. Because

the pattern repeats infinitely along one axis, moves in that direction may not alter the

space it occupies. (Note that another legal manipulation is to move the center leaf twice

as far, to take the place of the right leaf, with no vertical flip involved. But this is the

same as two sequential glide reflections, so by including a glide reflection, we will end

up generating this move as well.)

If we carefully map the interactions among these two moves, as Step3 of Definition

3.1 recommends, we obtain a Cayley diagram of the group describing the symmetry in

this frieze pattern. Like the frieze pattern itself, the Cayley diagram is infinite and thus

we can only see a portion of it at one time, and must use ellipses to suggest how it could

be extended. We will not go through the details of the mapping out of such a diagram



\master" | 2011/10/18 | 17:10 | page 33 | #47
i

i

i

i

i

i

i

i

3.1. Groups of symmetries 33

–3 –2

–1 1

2 3

4 5

6 7 7 6

5 4

3 2

1 –1

–2 –3

–5 –4

–3 –2

–1 1

2 3

4 5 5 4

3 2

1 –1

–2 –3

–4 –5

–7 –6

–5 –4

–3 –2

–1 1

2 3 3 2

1 –1

–2 –3

–4 –5

–6 –7

glide reflection glide reflection

glide reflection glide reflection

glide reflection glide reflection

glide reflection glide reflection

... ...

... ...

horizontal
flip

horizontal
flip

horizontal
flip

…

…

…

…

…

…

…

…

… …

…

…

Figure 3.12. A portion of the infinite Cayley diagram of the group of symmetries of the frieze
pattern in Figure 3.9.

here, as we did with the rectangle in Chapter 2. Figure 3.12 shows the resulting diagram,

the abstract version of which is shown in Figure 3.13.

The study of group theory has yielded a very interesting fact about frieze patterns.

The symmetry of any frieze pattern can be described by one of seven different infinite

groups.1 That is, although you may spend a lifetime creating new and different frieze

Figure 3.13. The abstract version of Figure 3.12. All the friezes and names of actions have

been removed, leaving only nodes representing different states, and two kinds of arrows connecting

them. The pattern of such connections, however, remains unchanged from Figure 3.12 to here.

1Actually, some of the frieze groups are isomorphic to one another, a concept we will learn in Chapter8.

But the frieze groups that are isomorphic (i.e., have the same structure) are still different in the actions that

comprise them, and thus different in their visual appearance.
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34 3. Why study groups?

patterns, the symmetry in each of those patterns can only be of one of seven different
types. Each such type is described by a group, one of which we just saw in Figures 3.12

and 3.13. Exercise 3.11 asks you to diagram the other six frieze groups, given six different

vine-and-leaf patterns that exemplify them.

This frieze example shows that the technique from Definition 3.1 is more broadly

applicable than it may at first have seemed|it can even apply to infinite objects! We

used it to measure the symmetries in a one-dimensional repeating pattern, and mentioned

earlier that chemists use it to classify the three-dimensional repeating patterns that occur

naturally in crystals. Just as frieze patterns can be described by one of seven frieze groups,

so crystal patterns can be described by one of 230 crystallographic groups [19]. As you

may therefore suspect, we can also classify two-dimensional repeating patterns with the

same technique, yielding one of what are appropriately called the 17 wallpaper groups.

Two-dimensional repeating patterns, like those found in wallpaper, will not be inves-

tigated in depth here. Although the technique from Definition 3.1 can be applied to such

patterns in principle, it takes a great deal of patience and a very large piece of paper. Such

diagrams have several different types of arrows, and extend infinitely in two directions,

like the wallpaper patterns they describe. They can be very tangled.

But notice the specific import generators have in visualization: a Cayley diagram for

a group relies on having a small set of generators to use as arrows. A Cayley diagram is

a map of the group, and the arrows are the roads. So on the one hand, if the set of actions

we use as arrows does not generate the whole group, then there will be some unreachable

nodes, and the diagram will not be connected. On the other hand, including an arrow for

every action in a group would typically clutter diagrams beyond readability. (In fact, in
infinite groups it simply could not be done!) A set of generators provides a few arrow

types that still connect all the nodes; this is what makes Cayley diagrams possible.

3.2 Groups of actions

This book introduced groups with two examples, Rubik's Cube and the rectangle. The

example applications we've seen so far in this chapter are like Rubik's Cube and the

rectangle in that they deal with physical objects with inherent symmetry. Therefore each

application so far has seen use of Definition 3.1 to find and illustrate the groups describing

the symmetry of some physical object.

But the definition of a group we learned in Chapter 1 is not restricted only to the

symmetry of physical objects. Any collection of actions satisfying the rules from Defintion

1.9 is a group. Indeed, some important examples of group theory (and some fun ones) do

not involve the symmetry of a physical object at all. This second section of the chapter

briefly shows two such examples.

3.2.1 Dancing

Several traditional styles of country dancing involve predefined steps called figures that
move couples around the dance floor. In square dancing and contra dancing, the dancers

learn these steps by name and practice following a caller who orders them to perform

specific figures in time with the music. In both these kinds of dances, couples stand in

pairs forming a box, as shown in Figure 3.14.
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3.2. Groups of actions 35

Figure 3.14. The arrangement of two couples in a square, ready to begin a square dance or a
contra dance.

Dancing a figure rearranges the dancers. If they correctly obey the caller, every dance

ends with the dancers back to the locations in which they began the dance. Figure 3.15

shows the effects of six example contra dance figures. The particular steps are not shown,

only the effect the figure has on the dancers' arrangements.

The collection of all such figures turns out to form a group. That is, all the criteria

from Definition 1.9 are satisfied by the collection of contra dance figures. Furthermore,

that group has the same structure as the group describing the symmetries of a square

(D4). In other words, the Cayley diagrams of both groups have the same shape, but with

different names on the nodes and arrows. When two groups have the same structure, we

say they are isomorphic, a topic we will study in Chapter 8.
Readers interested in learning more about the group theory in dance figures can begin

with the Exercises in Section 3.4.4 of this chapter. Further reading is available on the

World Wide Web; the author has found the website of Larry Copes [5] and an article by

Ivars Peterson [15] particularly informative.

Circle right Swing on side

Right and left through

Ladies’ chain

Gents allemande California twirl

Figure 3.15. How six example contra dance figures rearrange the dancers.
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36 3. Why study groups?

3.2.2 Polynomial roots

By now the reader is certainly convinced that group theory shows up in diverse situations.

But it would be a great disservice to the history of mathematics if I did not mention one

more application, the very reason that group theory was invented! In the nineteenth century,

two young mathematical prodigies, Neils Abel and �Evariste Galois, solved a mathematical

problem that had stood unsolved for centuries. It has come to be called \the unsolvability

of the quintic." It is one of the great discoveries in mathematics, and when you come to

Chapter 10 of this book, you will be ready to read about it in some detail. It rests on the

fact that the solutions to polynomial equations have a certain relationship to one another.

They form a group.

Galois did not call the patterns he noticed groups; later mathematicians who extended

his work gave them that name. But he was the first to notice them and study them. Galois

found groups when studying the roots of polynomials, but since his day mathematicians

have found a multitude of other contexts in which groups arise, some of which you have

just read about.

As in contra dancing, the actions in the groups Galois studied are not manipulations of

a physical object, but instead rearrangements of a collection of things. Instead of dancers,

Galois was rearranging the solutions to polynomial equations. The remarkable discovery

he made was that by examining the group of those rearrangements, you could tell how

difficult it was to solve the original equation. Some groups, he proved, correspond to

equations that are impossible to solve.2

This brief mention of the work of Galois, skipping many details (including Abel's

contribution), is included here for two reasons. First, it gives you a bit of the historical

origins of the subject, which are themselves group theory's first application. Second, you

now have something to look forward to as your study of group theory progresses; the end

of this book describes some famous, deep, and beautiful mathematics. The intervening

chapters prepare you for it.

3.3 Groups everywhere

This chapter has applied group theory to chemistry, visual art, dancing, and mathematics.

From these applications, it is clear that group theory arises in diverse contexts, yet these

examples are just a few from among the many applications of group theory. There is

neither space nor need to cover all the applications of group theory here, but I mention

some in passing, so that readers interested in a specific application know where to look

for more information.

We saw two ways that groups are useful to chemists|molecular shape and crystal

structure. Another way chemists use group theory is for studying and enumerating isomers,

using P�olya's technique. A paper of Kennedy, McQuarrie, and Brubaker [12] gives a good

overview of this technique with references to sources with more detail. Theoretical physics

has used group theory when looking at fundamental particles [4, 17].

Section 3.2.2 revealed that the birth of group theory was in the solution to a famous

mathematical problem from algebra. Since then, several other branches of mathematics

2Exactly what \impossible" means in this context is described in Chapter 10.



\master" | 2011/10/18 | 17:10 | page 37 | #51
i

i

i

i

i

i

i

i
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have made use of groups as well; I mention a few examples. Group theory has tight

connections to linear algebra (which can describe spatial manipulations, like some of our

group actions) and number theory (in which we will dabble in Section 8.3). Topology, the

abstract study of shapes and spaces, with applications in physics, astronomy, and else-

where, uses groups to categorize spaces and shapes. The textbook Group Representations
in Probability and Statistics covers uses of group theory in probability and statistics [7].
Subgroups and cosets (topics from Chapter 6) can be used to design error-correcting

codes, which help minimize error in transmitted messages. Every time you download a file

from the Internet, your computer uses codes like these to keep your download uncorrupted

by minor noise or static on the network lines.

David Benson's book Music: A Mathematical Offering [2] contains a chapter on the
application of group theory to music. It uses many different results from group theory,

from introductory through advanced. The technique mentioned above that chemists use

to count isomers, Benson uses to enumerate pitch classes with certain properties.

I could continue with further examples from poetry, juggling, sudoku, and more. But

the point has been made. Symmetry is everywhere, and group theory makes an essential

contribution to the study of symmetry. Our eyes can spot symmetry, but the measuring

technique from this chapter takes us beyond just spotting it. Cayley diagrams show that an

object's symmetries are not a disordered collection, but relate in what are often intricate

and beautiful ways. Group theory studies those relationships mathematically and uses

them to solve diverse problems.

3.4 Exercises

3.4.1 Basics

Exercise 3.1. Consider the six contra dance figures shown in Figure 3.15. Which of them,

if any, when repeated twice in succession, return the dancers to their original positions?

Which, if any, do not return the dancers to their original positions until the move is

repeated three times? Four? Do any figures require more repetitions than four to return

the dancers to their original positions?

Exercise 3.2. Consider the horizontal flip shown on top of Figure 3.11. What is the

effect of repeating that action twice in succession? How is the glide reflection shown in

the same figure different?

Exercise 3.3. Figure 3.4 shows that if you rotate a boric acid molecule clockwise one-

third of a full turn, it takes up the same space as it did originally. This clockwise rotation

generates the Cayley diagram shown in Figure 3.6. How would the diagram be different

if I had generated it with a counterclockwise rotation instead? Would the group size or

structure change?

Exercise 3.4. Name three physical manipulations you could do to the cube in Figure

3.7 that would rearrange its parts but leave it taking up the same space, as in step 2 of

Definition 3.1.
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38 3. Why study groups?

3.4.2 The symmetry of molecules

Exercise 3.5. Apply the technique from Definition 3.1 to a molecule of ethylene, shown

below. (Include the optional Step 3.) Where have we seen the resulting group before and

what is its name?

The chemical formula for ethylene is C2H4; the dark atoms indicate carbon and the light

blue atoms indicate hydrogen. A scale model of this molecule would lie flat on a table;

it has no depth.

Exercise 3.6. Apply the technique from Definition 3.1 to a molecule of sulfur chloride

pentafluoride, shown below. As in the previous exercise, perform the optional Step 3.

We have not named the resulting group so far in this book; can you find it in Group
Explorer?

The chemical formula for sulfur chloride pentafluoride is SF5Cl; the yellow atom indicates

sulfur, the white indicates chlorine, and the magenta atoms indicate fluorine.

Exercise 3.7. Repeat the previous exercise on a molecule of benzene, as shown below.

The chemical formula for benzene is C6H6; the dark atoms indicate carbon and the light

blue atoms indicate hydrogen. A scale model of this molecule would lie flat on a table;

it has no depth.

Exercise 3.8. Repeat the previous exercise on a molecule of eclipsed ferrocene, Fe.C5H5/2,

as shown below.
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Exercise 3.9. Your work in the exercises in this section has shown you several symmetry

groups, of various sizes. Is there any relationship between symmetry group size and how

much symmetry the corresponding object displays?

Exercise 3.10. What physical objects with which you are familiar have some symmetry?

Choose one and apply the technique in Definition 3.1 to create and diagram the group

describing its symmetry.

3.4.3 Repeating patterns

Exercise 3.11. As mentioned in this chapter, there are exactly seven groups that describe

all possible symmetries for frieze patterns. The diagram of one such group appears in

Figures 3.12 and 3.13.

This exercise has six parts, (a) through (f), each asking you to apply the technique in

Definition 3.1 to a frieze that exemplifies one of the other six frieze groups. The friezes

you need are shown below.

… …
… …

(a) (b)

… … … …

(c) (d)

… … … …

(e) (f)
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40 3. Why study groups?

If you found the example in the chapter an insufficient springboard for classifying

infinite groups, refer to the solutions in the Appendix for the solution to part (d), one of

the more difficult parts.

Exercise 3.12. For each of the following letter sequences, think of it as a frieze pattern.

Match each letter sequence with the leaf frieze from the previous exercise that has the

same symmetry group.

(a) LLLLLLLL

(b) MMMMMMMM

(c) MWMWMWMW

(d) HHHHHHHH

(e) SSSSSSSS

3.4.4 Dancing

Exercise 3.13. Take just the contra dance figure called \Circle right" from those shown

in Figure 3.15.

(a) Create a Cayley diagram for the group generated by this action alone (i.e., Circle

right and any number of repetitions of it).

(b) Does this group contain any of the other contra dance figures from Figure 3.15?

Exercise 3.14.

(a) Repeat Exercise 3.13 for the figure \Ladies' chain."

(b) Repeat Exercise 3.13 for the figure \Gents allemande."

(c) Repeat Exercise 3.13 for the group generated by the two figures \Ladies' chain" and

\Gents allemande" together.

Exercise 3.15.

(a) If you had to generate all the contra dance figures in Figure 3.15 using only combina-

tions of \Circle right" and another contra dance figure of your choice, which would

you choose? Show that your answer is correct.

(b) Is it possible to generate all the contra dance figures in Figure 3.15 using only

combinations of \Ladies chain" and one other contra dance figure of your choice?

If so, which contra dance figure should you choose? If not, how many more contra

dance figures beyond \Ladies' chain" would you need?

(c) How few contra dance figures can you start with, and still generate all the contra

dance figures in Figure 3.15 from their combinations?

Exercise 3.16.

(a) When you generate a group by combining contra dance figures as in Exercise 3.15,

can you generate any contra dance figures that are not shown in Figure 3.15?

(b) How big is the group of contra dance figures generated from those in Figure 3.15?

(c) Diagram the entire group.



\master" | 2011/10/18 | 17:10 | page 41 | #55
i

i

i

i

i

i

i

i

4
Algebra at last

So far you have been learning about groups in a way that is unique to this book. Our

unofficial definition of a group, Definition 1.9, is not how mathematicians define a group.

Though there are many benefits to the approach I have taken (and will continue using

later), it would be an incomplete education in group theory that did not acquaint you with

the official definition of a group, the one you would find in any other group theory book.
That standard definition comes with its own natural visualization technique, called a

multiplication table. Since we are focusing on visualization, multiplication tables will be

our inroad to the study of the standard definition of a group. But there is some background

material we must cover first, in Sections 4.1 and 4.2.

4.1 Where have all the actions gone?

In the Cayley diagrams we made in Chapter 2, actions in a group showed up in the

diagram as arrows. But in a typical Cayley diagram there were only arrows for some of
a group's actions, specifically the generators. Multiplication tables will fill an important

gap in our study by allowing us to see all the actions in a group and how they interact
with each other.

To see why Cayley diagrams do not illustrate all of a group's actions, recall Rule 1.8

on page 6, which stipulated that any combination of actions is also an action in its own

right. So, for example, even though Chapter 2 introduced the rectangle puzzle as having

two actions (horizontal and vertical flips), it is also legal to flip first horizontally and then

vertically. Furthermore, this combination can be thought of as one single action. But the
Cayley diagram for the rectangle puzzle (Figure 2.7 on page 18) does not include arrows

for this combined action. It only illustrates the two generators that were introduced with

the puzzle, horizontal and vertical flips. This subtle point was addressed in Exercise 2.13:

generators receive special treatment in Cayley diagrams, because they are represented by

the diagram's arrows. I encourage you to reexamine Figure2.7 briefly to verify this fact

and your understanding of it.

41
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42 4. Algebra at last

Figure 4.1. An annotated copy of Figure 2.7 from page 18. Above each rectangle in the figure
appears a phrase describing an action that leads there from the starting point.

Although Cayley diagrams do not show us every action in a group directly, they do

display the full set of actions indirectly. Every location in a Cayley diagram such as Figure
2.7 naturally correlates with the action that leads to that location. Therefore the full set
of actions is implicitly present in the diagram as the locations to which they lead. Let us

alter the diagram in Figure 2.7 to explicitly demonstrate this point. Figure 4.1 is a copy

of Figure 2.7 in which each rectangle configuration has been labeled with the name of

an action that leads there from the starting configuration. This makes the correspondence

between the locations and the actions that lead to them clear. Take a careful look at Figure

4.1 now and compare it to Figure 2.7. Note that the starting configuration is associated

with the action \none," because to get there from the start, simply do nothing!

Removing the rectangles and leaving only the annotations, as in Figure 4.2, has the

effect of making the diagram no longer be about configurations, but about actions. If you

prefer, it has changed from a diagram about nouns to one about verbs. Figure 4.2 does
not include arrow labels because they would be redundant. To distinguish \vertical flip"

arrows from \horizontal flip" ones at a glance, the vertical arrows are dashed. We can

infer which arrow is which by the actions they connect: Because the solid arrow points

from the start to \horizontal flip," it must symbolize the horizontal flip action, and thus

the dashed arrow symbolizes the vertical flip.

Diagrams like Figure 4.2 will become very useful to us in the next section, so let us

take a careful look at that diagram before proceeding. The following definition summarizes

the transformation that turned Figure 2.7 into Figure 4.2. As you read it, look over Figures

2.7, 4.1, and 4.2 to be sure that you see how each part of the definition plays out in that

example.
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4.1. Where have all the actions gone? 43

Figure 4.2. A simplified copy of Figure 4.1. The rectangles themselves have been removed, and
replaced by the actions that led to them. The labels on the arrows have become superfluous, and

were therefore removed. The two types of arrows are now distinguished by dashed vs. solid lines.

Definition 4.1 (diagram of actions). The following three steps transform a Cayley dia-

gram into one that focuses on the group's actions.

(i) Choose any node and call it the \start." A natural choice for starting node often

exists, as it did in the rectangle puzzle.

(ii) Relabel each remaining node in the diagram with a path that leads there from the

start.

(iii) Remove the arrow labels, and distinguish arrows in some other way (e.g., by color

or using solid lines vs. dashed lines).

Let us call the result of such a transformation a diagram of actions.

The transformation described in Definition 4.1 can be done to any Cayley diagram,

even a purely abstract one, such as the diagram of the Klein 4-group in Figure 2.9 on page

21. (Recall that the lines in Figure 2.9 lack arrowheads, for simplicity and to indicate

bidirectionality. We'll call them arrows nonetheless.) We will need to refer to the different

colored arrows in some way, in order to speak of paths in the diagram. Let's write R for

red arrow and B for blue. Applying the transformation in Definition 4.1 results in Figure

4.3. As a test of your understanding of Definition 4.1, check that Figure 4.3 is the correct

result of transforming Figure 2.9 into a diagram of actions.

Figure 4.3. The result of labeling nodes according to \actions" (in this case the colors of the
diagram's arrows) in the abstract Cayley diagram from Figure 2.9 on page 21. The group shown is

the Klein 4-group V4, which we first encountered in Chapter 2.
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44 4. Algebra at last

4.2 Combine, combine, combine

The diagram of actions for a group presents new information to us, information about the

relationships among the actions in the group. In fact, we will soon see that diagrams of

actions, like Figure 4.3, can be used as a simple kind of calculator. They calculate the

effect of combining any two of the group's actions.

It may seem strange to say that Figure 4.3 has actions in it, since it is an abstract

diagram. Of course, we expect mathematics to be abstract at times, but concrete cir-

cumstances help ground our understanding. So recall that we saw concrete examples in

Sections 2.2 through 2.5 that fit the abstract pattern in Figure 4.3. Here in this abstract

case, the \actions" are just following red and blue arrows in the diagram (called actions

R and B respectively). To see how any two actions combine, simply begin at the starting

node (N for none) and perform the two actions one after the other. This is how we can

use Figure 4.3 as a calculator.

For example, we can verify that \R followed by B" has the same effect as \B followed

by R." Use the diagram to follow the red (R) arrow from the start node, and then the

blue (B) arrow. This ends us at the RB node. Now verify for yourself that B followed by

R leads from the start to the same place. Thus those two different phrases, \R followed

by B" and \B followed by R," really describe equivalent actions, because they have the

same final result.

It is common to express this relationship using notation that comes from algebra. (In

fact, group theory is usually studied in a very algebraic way, as this chapter will continue

to show, and hence falls under the mathematical subject area called abstract algebra.) To

say \R followed by B" we write RB as if we were multiplying two variables in algebra;

to say \B followed by R" we will just write BR. Then the sentence

\R followed by B" is equivalent to \B followed by R"

can be written clearly and concisely as

RB D BR:

This observation is a very simple one, but Figure 4.3 can also calculate more complex

relationships among the group's actions. Consider, for instance, the lengthy sequence

of actions RRRBRRBBB . We can use common conveniences of algebraic notation to

write this same sequence of actions more concisely, as R3BR2B3, again as if we were

multiplying variables in algebra. Figure 4.3 can simplify this lengthy sequence as well.

Beginning at the start, perform the given sequence of actions|follow the red arrow three

times, then the blue once, the red twice, and finally blue three times. You should end up

at the node labeled R, which gives us the equation

R3BR2B3 D R:

We have used the diagram of actions as a calculator to do a multiplication problem; we

multiplied R3 times B times R2 times B3 and found it to equal R. Any diagram of

actions (as in Definition 4.1) can be used as a calculator in this same way.

(Perhaps you're wondering whether it's okay to simplifyR3BR2B3 further and write

it as R5B4. Find out for yourself whether those two expressions mean the same thing by

trying the technique just described.)
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Now it's becoming clear why group theory is part of algebra|these equations actually

look like algebra. But there is an important difference to keep in mind. Although we

write RB as if it is a multiplication of R and B , we use \multiplying" metaphorically|

we're really combining the actions by doing them sequentially. I will continue to use

the term \multiplication" in this loose way throughout this book. Using common names

like multiplication and addition as placeholders for abstract operations is common in

mathematics.

The equation R3BR2B3 D R (and each of an endless supply like it that we could

come up with) is a fact about how the actions in the group combine. The method we used

for finding that equation shows us that we don't need to worry about long, complicated

sequences of actions likeR3BR2B3, because no matter how lengthy a sequence of actions

we write down, our diagram of actions will always help us simplify it to an equivalent

action from among R, B , RB , or N .

4.3 Multiplication tables

Knowing how to use a diagram of actions as a calculator for a group is like having a

secret decoder ring|you can read facts from a diagram of actions because you know

the secret. But the purpose of visualization is not to keep secrets; it is to make things

clear. Let's therefore create a table containing all the information about how group actions

combine so that we no longer need to know the secret of how to read that information

from a Cayley diagram.

Such a table, which shows how every pair of group actions combine, is called a mul-

tiplication table. Recall how a gradeschool multiplication table looks; if you've forgotten,

see Figure 4.4. We wish to make a multiplication table with group actions in place of

numbers, and in which \multiplication" means combining two actions one after the other,

as above.

Continuing with the group shown in Figure 4.3 as our example, the four actions we

need to be concerned with are N , R, B , and RB . So we make a table analogous to Figure

4.4, but with N , R, B , and RB as row and column headings; see Figure 4.5. We can fill

the table by calculating the combinations of various pairs of actions, using Figure 4.3.

For example, in the R row and the B column, we write the result of combining R and B ,

Figure 4.4. A standard elementary-school multiplication table, in this case only showing how
to multiply the numbers 1 through 6.



\master" | 2011/10/18 | 17:10 | page 46 | #60
i

i

i

i

i

i

i

i

46 4. Algebra at last

Figure 4.5. Beginning to create a multiplication table for the group V4, whose Cayley diagram
appears in Figure 4.3

which is RB . In the RB row and the RB column, we write the result of combining RB

and RB , which is N . In performing the computations leading to these answers, Figure

4.3 is our calculator. Completing the whole table in this manner results in Figure 4.6.

Because N stands for \no action," combining it with another action has no effect,

e.g., NB D B . For this reason, the first row and column of Figure 4.6 are just multiplica-

tion by N , and thus simply repeat the headings. This makes the row and column headings

superfluous. It is therefore possible to omit those headings, and write the table as on the

right of Figure 4.6. The row and column headings have become part of the table itself, its

first row and column. This convention is used by Group Explorer because it makes the
table simpler. But the headings can be a useful reference, so later multiplication tables in

this book include them.

Figure 4.6. On the left, a completed version of the multiplication table begun in Figure4.5.

Each entry can be computed using Figure 4.3 as a calculator. On the right, the same table with row

and column headings removed, because they appear as the first row and column of the remaining

table anyway.

Multiplication tables are a potent new visualization technique because they reveal

patterns in the way the actions in the group combine, something Cayley diagrams do not

explicitly do. To make such patterns visually obvious, it helps to color the cells of the

multiplication table systematically. Assigning a different color to each action in the group

enables us to color each cell according to the action that appears there. Figure 4.7 shows

six multiplication tables colored in this way. The six groups depicted in the tables are the

same depicted by the six Cayley diagrams in Figure 2.10 on page 22.

For now, the patterns in Figure 4.7 are of purely visual interest, but we will study

them more in chapters to come. What remains in this chapter is to use multiplication

tables as an inroad to the standard definition of a group.



\master" | 2011/10/18 | 17:10 | page 47 | #61
i

i

i

i

i

i

i

i

4.3. Multiplication tables 47

e a a2

e

e

a a2 e

a

a

a2 e a

a2

a2

Cyclic group C3 (or Z3) Symmetric group S3

( , )a e

( , )a e

( , )e e

( , )e e( , )e e ( , )a e

( , )a e ( , )a e

( , )a e

( , )a e( , )e e

( , )a a( , )e e

( , )e a ( , )a a

( , )a a( , )e a

( , )e a ( , )a a( , )e  a

( , )a a( , )a a

( , )a a( , )e a

( , )e a

( , )e a

( , )e a ( , )a a

( , )a e2

( , )a e2

( )a e2, ( )a e2,

( )a e2,

( , )a a2

( , )a a2

( , )a a2

( , )a a2

( , )a a2

( , )a a2

( , )a a2( , )a a2

( , )e a

( , )e a

( , )e a

( , )a a

( , )a  a

( , )a a( , )e e

( , )e e

( , )e e

( , )e e

( , )e e

( , )e e ( , )a e

( , )a e

( , )a e

( , )a e

( , )e a2 ( , )e a2 ( , )a a2

( , )e a2

( , )e a2

( , )e a2

( , )e a2( , )a a2 2

( ; )a a2

( , )a a2 2

( , )a a2 2

( , )a a2 2

( , )a a2 2

( , )a a2 2

( , )a a2 2

( , )a a2 2

( , )a a2 2

( , )a a2 2

( , )a a2

( , )a a2

( , )a a2

( , )e a2

( , )e a2

( , )e a2

( , )e a2

( , )e a2 ( , )a a2

( , )a a2

( , )a a2

( , )a a2

( , )a a2

( , )a a2

( , )a a2

( , )a a2

( , )a a2

( )a e2,

( )a e2,

( , )a e2

( )a e2,

( )a e2,

( )a e2,

( , )a a2 2
000

000

100

100

010

010

110

110

001

001

101

101

011

011

111

111

111 011 101 001 110 010 100

100

100

100

100

100

100

100

000

000

000

000

000

000

000

000

010

010

010

010

010

010

010

110

110

110

110

110

110110

001

001

001

001

001

001

001

101

101

101

101

101

101

101 011

011

011

011

011

011

011

111

111

111

111

111

111

111

Direct product group C3 � C3 Direct product group C2 � C2 � C2

a b c d e f g h i j k l m n o p

a

a

b c d e f g h a j k l m n o p i

b

b

c d e f g h a b k l m n o p i j

c

c

d e f g h a b c l m n o p i j k

d

d

e f g h a b c d m n o p i j k l

e

e
f g h a b c d e n o p i j k l m

f

f

g h a b c d e f o p i j k l m n

g

g

h a b c d e f g p i j k l m n o

h

h

i l o j m p k n a d g b e h c f

i

i
j m p k n i l o b e h c f a d g

j

j

k n i l o j m p c f a d g b e h

k

k

l o j m p k n i d g b e h c f a

l

l

m p k n i l o j e h c f a d g b

m

m

n i l o j m p k f a d g b e h c

n

n

o j m p k n i l g b e h c f a d

o

o
p k n i l o j m h c f a d g b e

p

p

Quasihedral group with 16 elements Alternating group A5

Figure 4.7. Multiplication tables of the same small, finite groups whose Cayley diagrams appear
in Figure 2.10 on page 22.
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48 4. Algebra at last

4.4 The classic definition

Group theory is usually not introduced the way this book introduces it. It is only after

covering several chapters of fundamentals that most textbooks reveal that every group

can be seen as a collection of actions, the way this book introduces them. Most textbooks

introduce groups by stating the official definition of a group, Definition 4.2 on page 51.

It uses very mathematical language, which has the advantage of being very precise but

the disadvantage of being difficult to penetrate, especially for newcomers. Because that

standard definition lends itself more easily to constructing multiplication tables than does

our definition (Definition 1.9 on page 7), we can take advantage of our recent acquaintance

with multiplication tables to ease its introduction.

We have been calling the objects in a group \actions" because our definition requires

a group to be a collection of actions (with certain additional restrictions). But the standard

definition of a group is not based on actions. So we need to use more general terminology;

we'll call the objects in a group the elements of the group. This is a mathematical term;
mathematicians call collections of objects \sets" and the things in them \elements."

Along with this terminology comes some useful notation. To say that N is one of the

elements of the group V4, the standard notation is

N 2 V4:

The symbol 2 looks like an \e" in reference to the word \element." This is pronounced
\N is an element of V4." This terminology and notation is used not only in Definition

4.2 but in the remainder of this book and throughout mathematics in general.

In addition to this new terminology, let us also revive some old terminology. The

previous section taught us that multiplication tables show how to combine any two group

elements into one. Mathematicians call a method for combining objects an \operation,"

a word familiar to high-school algebra students. Such students learn the \order of oper-

ations," that multiplication and division must be done before addition and subtraction.

These are the four basic operations of arithmetic|each takes two numbers and combines

them in some way to produce a new number (e.g., 2 C 3 D 5 or 6:3 � 7 D 0:9). Be-

cause each of the operations mentioned here combines two things into one, we can more
specifically call them binary operations.
The combining of group elements, as depicted in a multiplication table, is also a

binary operation. We say it is a binary operation on the elements of the group, meaning
that it can combine any two of those elements to yield another one. We've been writing

this binary operation using multiplicative notation (R combined with B written as RB).

Other common ways to denote group operations include additive notation R C B and

other creative symbols such as R � B and R � B . As long as the writer is consistent, the
particular symbol used matters little.

These two new terms, element and operation, are central to Definition 4.2, and know-

ing them better prepares us to understand that definition. Interested readers can find more

formal definitions of set and operation in nearly any textbook on discrete mathematics,

or in a more traditional introductory group theory textbook.

Every multiplication table depicts a binary operation; it shows it to us in full. That's

what multiplication tables do|they have two axes (across and down), because the op-
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Figure 4.8. Can you figure out which of these two multiplication tables depicts the binary

operation for a group? To learn how, read Sections 4.4.1 and 4.4.2 and then try the exercises in

Section 4.5.3 on page 55.

eration is binary. But because the multiplication tables we're studying depict groups,
they will reflect the defining characteristics of a group from Definition 1.9. Not just any

square grid with symbols in it is the multiplication table for a group. In fact, two distinct

features distinguish those tables that depict groups from those that do not. Sections 4.4.1

and 4.4.2 cover those features, and enable us better to understand Definition 4.2. But if

you like thinking ahead, try figuring out which of the two multiplication tables in Figure

4.8 depicts a group. (And what's wrong with the one that does not?)

4.4.1 Associativity

Recall the example from page 44 in which we simplified the sequence R3BR2B3. Al-

though we simplified it to one basic operation, R, we can actually write lots of less

significant simplifications. Here are a few examples.

R3BR2B3 D RBR2B3 (because R3B D RB)

R3BR2B3 D R3BB3 (because BR2 D B)

R3BR2B3 D R3BB (because R2B3 D B)

In the first simplification on the list, we're concentrating on the R3B at the beginning of

R3BR2B3, and simplifying it alone. We might draw our attention to it with parentheses,

like this.

.R3B/R2B3 D .RB/R2B3

What is in parentheses on the left-hand side has been simplified to what is in parentheses

on the right-hand side. Writing the parentheses didn't change the meaning of the equation

at all; it just made it easier to understand. Parentheses are permitted anywhere but required
nowhere.
Because group operations permit parentheses for clarity but neither require them nor

have their meaning changed by parentheses, we say that group operations are associative.
That is, you may associate any portion of a multiplied chain of elements together without
changing the meaning. The two other examples above are rewritten parenthesized here.

R3.BR2/B3 D R3.B/B3

R3B.R2B3/ D R3B.B/
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50 4. Algebra at last

Not all binary operations are associative. For instance, consider subtraction of whole

numbers.

4 � .2 � 5/ ¤ .4 � 2/� 5

Because the placement of parentheses in this chain of subtractions changes the result,

subtraction is not associative. When subtracting, parentheses matter, unlike when adding,

or when combining group elements.

Combining actions in sequence is always associative, and thus group operations are
always associative. This is the first of two special properties every group operation must

have; the second is discussed below. Together they form the heart of Definition 4.2.

Several exercises at the end of this chapter will help you get to know how multiplication

tables for groups display both associativity and inverses.

4.4.2 Inverses

Rule 1.6 in Definition 1.9 requires each group element to be reversible. That is, given any

group element, you should also be able to find its opposite, which we call its inverse. If
you perform an action and then perform its inverse, the end result is the same as if you

had done nothing at all. In Rubik's Cube, for instance, the inverse of a clockwise turn

for a face is a counterclockwise turn of the same face. Doing the one and then the other

has no impact on the state of the cube; it is equivalent to having taken no action.

In order to write this principle down using algebraic notation, we need a symbol that

means \no action." In the multiplication tables I made for V4, I used N for \no action;"

often group theory textbooks use 0, 1, or e instead. This special element of a group is

called the identity element. In this book I will usually write e for the identity. (Do not
confuse this use of the lowercase letter e with its other common use in mathematics.

The Euler number e D limn!1
�

1C 1
n

�n � 2:271828 is used for computing compound

interest, radioactive decay, etc.)

Having this symbol enables us to write equations saying that every element of a group

has an inverse. As an example, consider the group S3, whose multiplication table appears

in Figure 4.7. Using the notation in that multiplication table, with e as the identity, we

can write equations showing each element of S3 has an inverse. Here are six equations,

one for each element of S3. The first equation, for example, shows that r can be undone

by r2|so r2 is the inverse of r .

r.r2/ D e

.r2/r D e

ff D e

.f r/.f r/ D e

.f r2/.f r2/ D e

ee D e

In this group, elements such as f and f r are their own inverses, but two are not, r

and r2. Instead, they are one another's inverses. All of these equations could have been

written without parentheses, due to associativity, but I chose to add them for clarity.
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The group V4 is a more unusual example, because every element in it is its own

inverse. (Think of the rectangle puzzle|any flip twice changes nothing.)

NN D N

RR D N

BB D N

.RB/.RB/ D N

The fact that every element of a group has an inverse is the second of two key facts in

Definition 4.2, the first being associativity, covered in the previous section. This chapter's

exercises will also give you a chance to examine the impact of this fact on the appearance

of multiplication tables. But now, we are ready to read and analyze the classic definition

of a group.

4.4.3 Putting it all together

Definition 4.2 (group). A set G is a group if the following criteria are satisfied.

1. There is a binary operation � on G.

2. That operation is associative | i.e., for any elements a; b; c 2 G, the equation

.a � b/ � c D a � .b � c/ is true.

3. There is an identity element e 2 G. That is, for any other element g 2 G, the

equations e � g D g and g � e D g are true.

4. Every element g 2 G has an inverse, written g�1, and the equations g � g�1 D e

and g�1 � g D e are true.

Part (1) of this definition essentially says \a group is a multiplication table." Part (2)

restricts attention only to those multiplication tables that display associative operations, as

explained in Section 4.4.1. Part (4) says that every element has an inverse (as in Section

4.4.2) and it depends upon the notion of an identity element (also from Section 4.4.2),

required by Part (3).

Notice that a new notation has been introduced|g�1 means the inverse of the group

element g. So, for instance, in V4, we could write

R�1 D R;

and in S3, we could write

r�1 D r2:

In any group, e�1 D e. Can you see why the definition makes this true?

The discussions leading up to this point have made it clear that Definitions 1.9 and 4.2

are very related. But are they really the same? That is, if Definition 1.9 says that something

is a group, will Definition 4.2 agree? Or vice versa? The previous two sections constitute

an informal argument for why the answer to the first question must be yes. But we will

return to this and definitively answer the second question also when we cover permutation

groups in Chapter 5.
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52 4. Algebra at last

4.4.4 Past, Present, Future

This chapter has provided an important new outlook on our subject matter. We can now

think of groups using either of two equally correct paradigms, as a collection of actions

or as a set with a binary operation. Each has its own advantages, and sometimes a group

theoretic fact is more clear from one viewpoint than from the other. Thus it is good

to have both at our disposal as we proceed into the next few chapters, which get into

more serious study of groups and unearth some of the famous theorems of this branch

of mathematics. But at present, it is time to exercise the new viewpoint on group theory

this chapter has given us.

4.5 Exercises

4.5.1 Basics

Exercise 4.1. Consider the lightswitch group shown in Figure 2.8. Let L stand for the

action of flipping the left switch and R stand for the action of flipping the right switch.

(a) Which of the following equations are true and which are false in this group?

LRRRR D RRL L D RR

LR D RLRLRL R8 D R100

(b) Let N stand for the non-action (leaving the switches untouched). Which of the fol-

lowing equations are true?

.LNR/2 D LNR NN D N

RL D N R4 D N

.LNR/3 D R3L3 LRLR D N

(c) What is the smallest positive power of R that equals N ?

(d) What is the smallest positive power of L that equals N ?

(e) What is the smallest positive power of RL that equals N ?

(f) What is the smallest positive power of LR that equals N ?

Exercise 4.2.

(a) Apply the transformation in Definition 4.1 to the lightswitch Cayley diagram in Figure

2.8.

(b) Create a multiplication table for the lightswitch group.

Exercise 4.3. Each part below describes a set with a binary operation on it. For each

one, determine whether it is commutative and whether it is associative.

(a) the addition operation on the set of all whole numbers

(b) the subtraction operation on the set of all whole numbers
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(c) the multiplication operation on the set of positive real numbers

(d) the division operation on the set of positive real numbers

(e) the exponentiation operation on the set of positive whole numbers (that is, the oper-

ation written ab , but typed a^b on many calculators)

4.5.2 Creating tables

Exercise 4.4. The Cayley diagrams for two groups are shown here, the cyclic group C5

on the left and the Quaternion group Q4 on the right.

(a) The red arrow in the diagram for C5 represents multiplication by what element?

(b) What is a3 � a in C5?

(c) What is a3 � a � a in C5?

(d) If 1 is the identity element, then what do red arrows in the diagram for Q4 represent?

What do the blue arrows represent?

(e) What is i2? What is j � i?

(f) What is i � j � j ?

Exercise 4.5. Using the Cayley diagrams from Exercise 4.4, answer the following ques-

tions.

(a) How do you use the diagram of C5 to multiply x � a2 in C5, for any element x?

(b) How do you use the diagram of Q4 to multiply x � k in Q4, for any element x?

Exercise 4.6. Create a multiplication table for each of the following Cayley diagrams.

(a) C5, as shown on the left of Exercise 4.4. Use the template given here.
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54 4. Algebra at last

(b) Q4, the quaternion group with eight elements, as shown on the right of Exercise 4.5.

Use the template given here.

(c) A4, the alternating group with twelve elements:

Recall that lines without arrowheads are bidirectional|it is as if it has arrowheads

going both ways. Make your own table, using e as the identity.

Exercise 4.7. It is possible to suggest the full multiplication table for an infinite group

by showing just part of it. Fill in the following partial table for the operation of addition

on the set of all whole numbers; the ellipses indicate the table continues infinitely in all

directions.
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Exercise 4.8. Exercises 2.4 through 2.8 of Chapter 2 asked you to draw Cayley diagrams

for three groups. Use the diagrams you drew to make multiplication tables for those same

groups. Note that if your diagram is not yet a diagram of actions, you may need to apply

the transformation in Definition 4.1.

Exercise 4.9. Exercises 2.18 and 2.19 of Chapter 2 asked you to find the pattern describ-

ing the sequence of Cayley diagrams for the \n-gon puzzle." I mentioned in that exercise

that the family of groups describing such puzzles are called the dihedral groups. You will
study them in detail in Chapter 5, and this exercise previews some of that material.

Find the pattern describing the sequence of multiplication tables for those same groups.

You might consider the following steps.

(a) Create multiplication tables from the Cayley diagrams for triangle, square, and regular

pentagon puzzles.

(b) Discern a pattern and describe it. This will be your conjecture about n-gons for n > 5.

(c) Return to the group library in Group Explorer and investigate the same groups as in
Exercise 2.19. (If you do not remember which ones they are, you can use the search

feature again and look up \triangle," \square," etc.)

(i) Do your multiplication tables from part (a) agree with those in Group Explorer?
Note that Group Explorer may have used different names for the elements of
the group than you did, and may have chosen a different order for the rows

and columns, but the pattern in the table should be the same. You can rename
elements and reorder the rows and columns in Group Explorer's multiplication
tables to help with the comparison.

(ii) Does your conjecture about the pattern of multiplication tables for n-gons with

n > 5 hold up against all the data you can find in Group Explorer? (This
includes groups other than the three you just examined.)

(d) Can you give a convincing reason why the conjecture you made ought to be true?

4.5.3 Almost tables

Exercise 4.10. Consider the following multiplication table that displays a binary opera-

tion.

(a) Explain succinctly why the binary operation is not associative. Can you write your

answer as one equation?

(b) Does the operation have inverses?
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56 4. Algebra at last

Exercise 4.11. Consider the following multiplication table that displays a binary opera-

tion.

(a) Explain succinctly why the binary operation does not have inverses. Can you write

your answer as one equation?

(b) Is the operation associative?

Exercise 4.12. Consider the following multiplication table that displays a binary opera-

tion.

(a) Does this operation have inverses? Justify your answer.

(b) Is the operation associative? Justify your answer.

Exercise 4.13. For each multiplication table below, explain why it does not depict a
group.

(a) (b)

(c) (d)

Exercise 4.14. The following multiplication table does not depict a binary operation on

the set fe; x; yg. The reason is part of the definition of a binary operation; we would say
that this binary operation lacks closure. Can you spot the problem and explain it in your
own words?
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Exercise 4.15. Why can the same element not appear twice in any row of a group's

multiplication table? Does this restriction also apply to columns?

Exercise 4.16. Exercises 2.14 through 2.17 on page 24 asked you to translate the rules

from Definition 1.9 into criteria about diagrams. The goal was to create criteria for judging

whether a diagram was a Cayley diagram|i.e., whether it represented a group.

This exercise will show that the answers to Exercises 2.14 through 2.17 are not

sufficiently restrictive. That is, there are diagrams that satisfy those criteria but are not

Cayley diagrams for any group. Consider the two diagrams shown below, neither of which

is a valid Cayley diagram.

(a) Does each diagram meet all the criteria that were your answers to Exercises 2.14

through 2.17?

(b) Try to convert each of these diagrams into a multiplication table. What problem arises

in each case?

(c) Can you explain what is wrong with these diagrams that caused the problems you

encountered in part (b)?

(d) Create another diagram satisfying the criteria of Exercises 2.14 through Exercises

2.17, yet having the same problem as the two diagrams above.

This exercise shows a slight discrepancy between the actions-based definition of group

(Definition 1.9, illustrated using Cayley diagrams) and my algebraic one (Definition 4.2,

illustrated using multiplication tables). This discrepancy will be cleared up in Section 6.1.

Exercise 4.17. Explain why a Cayley diagram must be connected. That is, why must

there be a path from every node to every other node?

Exercise 4.18. When creating a multiplication table for a group, if you try to include

two different identity elements, what goes wrong? What does this lead you to conclude

about groups?
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58 4. Algebra at last

4.5.4 Small groups

Exercise 4.19. Complete each of the following multiplication tables so that it depicts

a group. There is only one way to do so, if we require that 0 be the identity element in

each table. Then search Group Explorer's group library to determine the names for the
groups the tables represent.

(a)

(b)

(c)

(d)

(e)

Exercise 4.20. The following table can be completed in more than one way, and still

have the result depict a group. Find all possible such completions of the table, again

using 0 as the identity element. How many did you find? Search Group Explorer's group
library to determine the names for the groups each of your resulting tables represents.
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Exercise 4.21. From Exercise 4.19 part (a) you can conclude that there is only one

pattern for a group containing two elements. This is because the only difference between

the multiplication table you computed and that of any other group with two elements will

be the names of those elements. So the pattern of interactions among elements (or colors

if we were to color the cells of the table) would be no different.

(a) How many patterns are there for groups containing three elements?

(b) Containing one element?

(c) Containing four elements?

Chapter 9 attacks the general question, \How many groups there are with n elements?"

4.5.5 Table patterns

These exercises preview Section 5.2, about an important family of groups called the

abelian groups.

Exercise 4.22. We saw earlier in this chapter that in the group V4, the equationRB D BR

is true. In fact, for any two elements a; b 2 V4, the equation ab D ba is true. That is,

the order in which you combine elements does not matter. Consider each group whose

multiplication table appears in Figure 4.7 (except A5, whose details are too small to see).

For which of those groups does the order of combining elements matter?

Exercise 4.23. Groups in which the order of multiplication of elements does not matter

are called commutative or abelian. Look through the groups in Group Explorer's group
library, starting with the smallest, until you find one that is noncommutative. What is the

name of the smallest noncommutative group?

Exercise 4.24. What visual pattern do the multiplication tables of commutative groups

exhibit?

4.5.6 Algebra

Exercise 4.25. To go along with the other algebraic notation we've seen in this chapter,

there is also an algebraic notation for generators. For instance, the group C5, which

appears in the first few exercises of this chapter, is generated by the element a. The

standard notation for this is C5 D hai. The hai means \what you can generate from a,"

and so the equation C5 D hai is saying \C5 is the group generated from a." From Figure

4.3, we can write V4 D hR;Bi, saying that R and B together generate V4.

Show your understanding of this new notation by filling in the blanks below using

however many elements are necessary to generate the group. Use as few elements as

possible.
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(a) From the Cayley diagram in Exercise 4.4, we see that Q4 D h i.

(b) From the Cayley diagram in part (c) of Exercise 4.6, we see thatA4 D h i.

(c) There is more than one way to generate most groups. Find a different (yet still correct)

answer to each of the previous two questions.

Exercise 4.26. Use the multiplication tables you constructed in Exercise 4.6 to determine

the inverses for each element of each of the three groups from that problem.

(a) In the cyclic group C5, the inverses are

e�1 D ,

a�1 D ,

.a2/�1 D ,

.a3/�1 D , and

.a4/�1 D .

(b) In the quaternion group Q4, the inverses are

1�1 D , i�1 D ,

j�1 D , k�1 D ,

.�1/�1 D , .�i/�1 D ,

.�j /�1 D , and .�k/�1 D .

(c) In the alternating group A4, the inverses are

e�1 D , a�1
1 D , c�1

1 D ,

x�1 D , a�1
2 D , c�1

2 D ,

y�1 D , b�1
1 D , d�1

1 D ,

z�1 D , b�1
2 D , and d�1

2 D .

(d) In general, how do you use a multiplication table to find an element's inverse?
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Exercise 4.27. Inverses can be used to solve equations. In the group C5, to solve a
2x D a

for x, I can proceed as in high school algebra:

a2x D a

.a2/�1a2x D .a2/�1a multiply both sides by .a2/�1

x D .a2/�1a cancel a2 with its inverse

x D a4 use Exercises 4.6 and 4.26 to compute the answer

Computing .a2/�1a in C5 gives x D a4.

Try solving each of these equations in C5.

(a) a3x D a2

(b) a4a2x D a

(c) ax.a3/�1 D e

Exercise 4.28.

(a) If I have the equation a2x.a2/�1 D a to solve as in the previous exercise, can I cancel

the a2 and the .a2/�1? Why or why not? (Hint: Is the result you get by canceling

actually a solution to the equation?)

(b) If I have a similar equation, but in the group Q4 from Exercise 4.6, ixi
�1 D j , can

I cancel the i and i�1? Why or why not?

(c) Your answers to parts (a) and (b) should be different. What makes them different?

Hint: Apply what you learned from the exercises in Section 4.5.5.

Exercise 4.29. Consider the equation b1 � t � a2 D y in the group A4; I want to solve

for t . The previous exercise is a warning that I cannot simply proceed as follows.

�
�b�1
1 ���a�1

2 ���b1 � t ���a2 D b�1
1 � a�1

2 � y

t D b�1
1 � a�1

2 � y D x

What should I do instead?

Exercise 4.30. Solve these equations for t .

(a) In Q4, j itk
�1 D �kj .

(b) In A4, t.b2/
2 D xyz.

(c) In S3, rtf D e. (See Figure 4.7 for a multiplication table for S3.)

Exercise 4.31. Let's say you have a group G with identity element e. Take any three

elements a, b, and c in G.

(a) What does the equation ab D e say about the relationship between a and b?

(b) If both ab D e and ac D e, can you use algebra to show that b D c?

(c) Can an element in a group have two different inverses?
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62 4. Algebra at last

Exercise 4.32. The set of integers (all positive and negative whole numbers, and zero)

is often written as Z. Use Definition 4.2 to answer each of the following questions about

Z.

(a) Is it a group using ordinary addition as the operation?

(b) Is it a group using ordinary multiplication as the operation?

(c) Are the even integers a group using ordinary addition as the operation?

(d) The even integers are sometimes written 2Z, because they can be obtained by mul-

tiplying every integer by 2. If we think of 3Z, 4Z, and in general any nZ in the

same way, for what integers n is the set nZ a group using ordinary addition as the

operation?

Exercise 4.33. The rational numbers (often written Q) are the set of fractions a
b
, where

a and b are integers (but b ¤ 0). For example, 1
2
, �6

11
, and 50

3
are all rational. Any integer,

including zero, is rational, because you can just divide it by 1. For example, 10 is the

rational number 10
1
.

Use Definition 4.2 to answer each of the following questions about Q.

(a) Is it a group using ordinary addition as the operation?

(b) Is it a group using ordinary multiplication as the operation?

(c) Call QC the positive rational numbers (only those greater than zero). Is QC a group
under ordinary addition?

(d) Is QC a group under ordinary multiplication?

(e) Call Q� the nonzero rational numbers (all positive and negative ones, only leaving
out zero). Is Q� a group under ordinary addition?

(f) Is Q� a group under ordinary multiplication?

(g) Why are groups like Q, QC, and Q� difficult to visualize using multiplication tables
and Cayley diagrams?
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5
Five families

We have learned two powerful group theory visualization techniques. Cayley diagrams

show us groups as collections of actions, and multiplication tables show them to us as

binary operations. This chapter uses both to give a well-rounded introduction to five

famous families of groups. Along the way a variety of new concepts will also arise.

We will begin by meeting the cyclic groups, for many reasons the perfect place to start

our tour. Not only are cyclic groups the simplest kind of symmetry groups, but meeting

them first will make the rest of the chapter clearer: Cyclic groups show up in all other

groups as what we call orbits, and we will learn a new visualization technique based on
orbits, called a cycle graph. Cyclic groups will also help us understand the groups we
meet thereafter, the abelian groups and the dihedral groups. Both these families of groups

can be built by combining cyclic groups using product operations, which we will preview

in this chapter and study fully in Chapter 7.

Last, we will meet the symmetric and alternating groups, which will show the con-

nection between groups and the idea of rearranging a set of items. Many examples and

exercises in this book have dealt with rearrangements of things, which mathematicians

call permutations. The chapter culminates with two beautiful results from group theory:
the symmetries of the five Platonic solids and an illustrated proof of Cayley's theorem,

as promised at the end of Chapter 4.

In some ways, this chapter is a gateway from introductory material to deeper material.

Of course, everything in it (including the proof of Cayley's theorem) is done visually.

To see how familiarity with the five families this chapter introduces will pay off, take

a moment to briefly consider each of the following questions.

(1) Is there more than one group with ten elements?

(2) Is there a group in which no element (other than the identity) is its own inverse?

(3) Do all groups describe the symmetries of some object?

Think how helpful it would be, when trying to answer such questions, to have a large,

well-organized library of groups in your memory. The tour this chapter gives exposes you

63
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64 5. Five families

to many new groups, organizes them into memorable categories, and highlights their key

features visually.

5.1 Cyclic groups

5.1.1 Things that spin

Chapter 3 taught us how to describe the symmetries of physical objects using groups. The

most basic family of groups, the cyclic groups, describe objects that have only rotational

symmetry. The symmetry group for the molecule of Boric acid we analyzed (Figure3.6,

page 29) is a cycle of three actions. What makes cycles simple is that they only have one

kind of action. There's only one thing you can do to the molecule B.OH/3 that respects

its symmetry|rotate it. You can rotate it backwards or rotate it several times, but those

are consequences of one fundamental rotation, in this case of 120 degrees clockwise.

The group of symmetries of the Boric acid molecule has three elements because the

molecule has three arms. Similar shapes with more arms are described by cyclic groups

with more elements. There may not be molecules with these shapes, but we can imagine

them. Also, some everyday objects have only rotational symmetry|consider the pinwheels

and propellers in Figure 5.1. Notice the similarities between the simple analysis of the

propeller's symmetries in Figure 5.2 and that of the Boric acid molecule in Figures 3.4

and 3.5.

Figure 5.1. A six-bladed propeller and an eight-foiled pinwheel, whose symmetry groups are

the cyclic groups with six and eight elements, respectively.

Because the cyclic group describing the B.OH/3 molecule has three elements, it is

commonly called C3. The groups of symmetries for the propeller and the pinwheel in

Figure 5.1 would therefore be C6 and C8, respectively. You may hear C3 called \the

cyclic group of order 3," because order is the group theory term for size, or number

of elements. When speaking of the whole family of cyclic groups, or of a nonspecific

member of it, it is common to write Cn, meaning that n could stand for any positive

whole number.

The most common way to name the elements in Cn is to call the identity 0, the clock-

wise rotation 1, the clockwise rotation done twice 2, and so on, up to n � 1. We do not

have an action called n in Cn because an n-bladed propeller rotated n times returns to its

original position, so n rotations are really no different than zero rotations. Each number

therefore signifies how many times to repeat the one fundamental action, named 1.



\master" | 2011/10/18 | 17:10 | page 65 | #79
i

i

i

i

i

i

i

i

5.1. Cyclic groups 65

1 6
2

3

4 3
5 4

6
= 2

1

5

1 12 2

3 3

4 45 5

6 6
=

Figure 5.2. Propellers have only rotational symmetry. Rotating them clockwise (as shown in the
top row) keeps them occupying the same space, but flipping them over (as in the bottom row) does

not. The lower right propeller rotates backwards compared to the other three, and thus doesn't sit

the same in space.

Figure 5.3 shows Cayley diagrams for C3, C5, and Cn using this naming convention.

The rightmost diagram in Figure 5.3 makes use of an ellipsis to show that the Cayley

diagram for Cn is always a cycle for any value of n.

Figure 5.3. Cayley diagrams for the cyclic groups C3 , C5, and Cn

5.1.2 Multiplication tables and modular addition

You may also see a cyclic group Cn referred to as Zn. This alternate naming convention

comes from the common mathematical use of Z to refer to the integers. Since we think

of Cn as the first n nonnegative integers, many books and papers call it Zn instead.

In Exercise 4.6, you created a multiplication table from the Cayley diagram of C5, also

known as Z5. Using numbers as names for actions, as described above, that multiplication

table becomes the left one in Figure 5.4. Although much of that table looks like ordinary

addition (e.g., 0C3 D 3 and 2C2 D 4), not all of it does (e.g., 2C3 D 0 and 3C3 D 1).

The official name for the operation in C5 is modular addition, or less formally, clock
addition. It works just the way we count on a clock|because the numbers wrap around



\master" | 2011/10/18 | 17:10 | page 66 | #80
i

i

i

i

i

i

i

i

66 5. Five families

0 1 2 3 4

0

0

1 2 3 4 0

1

1

2 3 4 0 1

2

2

3 4 0 1 2

3

3

4 0 1 2 3

4

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

1

1

2 3 4 5 6 7 8 9 10 11 12 13 14 0 1

2

2

3 4 5 6 7 8 9 10 11 12 13 14 0 1 2

3

3

4 5 6 7 8 9 10 11 12 13 14 0 1 2 3

4

4

5 6 7 8 9 10 11 12 13 14 0 1 2 3 4

5

5

6 7 8 9 10 11 12 13 14 0 1 2 3 4 5

6

6

7 8 9 10 11 12 13 14 0 1 2 3 4 5 6

7

7

8 9 10 11 12 13 14 0 1 2 3 4 5 6 7

8

8

9 10 11 12 13 14 0 1 2 3 4 5 6 7 8

9

9

10 11 12 13 14 0 1 2 3 4 5 6 7 8 9

10

10

11 12 13 14 0 1 2 3 4 5 6 7 8 9 10

11

11

12 13 14 0 1 2 3 4 5 6 7 8 9 10 11

12

12

13 14 0 1 2 3 4 5 6 7 8 9 10 11 12

13

13

14 0 1 2 3 4 5 6 7 8 9 10 11 12 13

14

14

Figure 5.4. Multiplication tables for the groups C5 and C15

in a cycle, so does the addition. If at 10:00pm, you start to watch a three-hour movie,

you wouldn't say it will end at 13:00pm, but rather at 1:00am. That's how 10 and 3 are

added modulo 12, or mod 12. Counting past 12 does not lead to 13, but rather back to
1. The only difference between a typical wall clock and the Cayley diagram for C12 is

that the number at the top will be 12 on the clock, but 0 in the Cayley diagram. This

difference is not significant, but just a matter of convention.

Similarly, in C5, when we add 3 C 4, we cannot get 7 because C5 contains only 0,

1, 2, 3, and 4. Instead, we count 4 steps from 3, because that's the meaning of 3 C 4,

wrapping around the \clock" when necessary, 3 ! 4 ! 0 ! 1 ! 2. To be sure this

makes sense, try adding 3 and 2 in C5; your result should be 0. If your mind's eye is not

used to envisioning five-hour clocks, use the one in Figure 5.3 for convenience.

Modular addition has a nice visual effect on multiplication tables; each row is different

from the row above it only by being cycled one cell to the left. In colored multiplication

tables, this extends the color spectrum in the top row diagonally through the table, creating

a rainbow effect; see the table for C15 on the right of Figure 5.4. That table also exem-

plifies the general pattern for multiplication tables for cyclic groups. Notice the diagonal

strip of 14s, from the lower left corner to the top right. Above that strip, the table obeys

the laws of ordinary addition, because none of the sums exceeds 14. Below that strip,

addition mod 15 shows its colors. Figure 5.5 illustrates this pattern in the general case, Cn.

5.1.3 Orbits

We started our study of families of groups with Cn partly because of its simplicity and

partly because cyclic groups are fundamental to the study of group theory in several ways.

Shortly we will meet the abelian groups, and thereafter the dihedral groups, which can
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0

0

0

1 0

1

1

2

2

2

n – 1 0n – 2

0

n – 2

1n – 1n – 1

n – 1

n – 1

n – 1

n – 2

n – 2

n – 2

n – 3

n – 3

n – 4

2

10

32

43

1

Figure 5.5. The pattern of multiplication tables for cyclic groups. The ellipses indicate linear

sequences and the colored diagonal lines connect strips that are numbered (and therefore colored)

the same.

be built up in straightforward, regular ways from cyclic groups. But first, let's learn how

to find cyclic groups inside all other groups.

Look back at the first Cayley diagrams in this book, in Figure 2.10 on page 22. In

the top right diagram, of S3, consider just the blue arrows, which represent the action

r . Starting at the identity e, the blue arrows lead in a cycle around the outside of the

diagram, tracing out a copy of C3 inside S3. The standard term for this cycle is the orbit
of the element r . Orbits are usually written with braces to indicate that the elements are

to be treated together as a set; this one is therefore fe; r; r2g.
Every element in a group can trace out an orbit. In the same diagram for S3, imagine

starting from e and repeatedly following the f arrows. A shorter orbit is generated, fe; f g,
because f 2 D e.

The orbits of r and f we can clearly see in the diagram as it is shown in Figure

2.10; r 's orbit is the outermost ring and f 's is a single vertical two-way arrow. But other

orbits exist. For instance, we can compute the orbit of f r2 by doing just what its name

suggests|follow the f arrow and then the r arrow twice|see where you end up, and

repeat as necessary. Trace out this path in the diagram; you should find that the orbit

of f r2 is fe; f r2g. So the orbit of f r2 is not visually obvious in the diagram of S3 in

Figure 2.10, but it is an orbit nonetheless. Chapter 6 will show that there are many ways

to structure a Cayley diagram, and S3 can be represented in a way that makes the orbit

of f r2 obvious.

Even those orbits that are clear in a Cayley diagram do not always look circular.

Consider the diagram of C3 � C3, also in Figure 2.10. The orbit of .e; a/ is the three-

element cycle along the top of the diagram. Though it is a copy of the group C3, in the

diagram it is laid out linearly, not circularly.
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Element Orbit

r fe; r; r2g
r2 fe; r2; rg
f fe; f g
f r fe; f rg
f r2 fe; f r2g

Figure 5.6. The orbits for the group S3 , shown on the left in a table, and on the right as the

group's cycle graph.

If we consider each element of S3 in turn and compute its orbit, we come up with the

list shown on the left of Figure 5.6. (Note that the sets fe; r; r2g and fe; r2; rg are the same;
we are not concerned with the order in which the elements appear in an orbit.) We cannot

compute an orbit for the identity element, since it has no arrow to lead us anywhere.

5.1.4 Introducing cycle graphs

From lists like the one in Figure 5.6, we can create a diagram connecting the elements that

appear in an orbit together. Such diagrams show how the group is made up of the orbits of

its elements. Since each orbit is a cycle, the resulting diagram is called a cycle graph. The
cycle graph for S3, constructed from the list in Figure 5.6, is shown in that same figure.

We will use cycle graphs throughout the rest of this chapter to see how the families

of groups we meet are built on cycles. However, since cyclic groups themselves are

comprised of only one cycle, their cycle graphs are rather unrevealing compared to the

cycle graph of S3. In fact, they look no different from the groups' Cayley diagrams, except

that by convention cycle graphs do not use arrowheads. Compare the Cayley diagrams in

Figure 5.3 with the cycle graphs for the same three groups, in Figure 5.7.

Figure 5.7. Cycle graphs for the cyclic groups C3, C5 , and Cn, the same groups whose Cayley

diagrams appear in Figure 5.3.

5.2 Abelian groups

Cyclic groups lead naturally to abelian groups in two ways. First, all cyclic groups are

abelian, and the abelian groups retain some of the important simplicities that cyclic groups

have. Second, we will see that there is a natural way to construct abelian groups by piecing

together cyclic ones. This fact is called the Fundamental Theorem of Abelian Groups,

which this chapter will preview, leaving the full details until Chapter 8.
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Named after Neils Abel, one of the founders of group theory, abelian groups are those
in which the order in which one performs the actions is irrelevant. That is, if a and b are

any two actions in an abelian group, then the action a followed by the action b yields the

same result as b followed by a. The algebraic way to say this is that a commutes with b,
and so abelian groups are often referred to as commutative. The equation ab D ba says

that a and b commute; a group is abelian when that equation is true no matter which two

elements from the group a and b stand for.

5.2.1 Noncommutativity in Cayley diagrams

To see the impact of commutativity on the appearance of a Cayley diagram, let's imagine

we have the Cayley diagram of some abelian group G. Say the diagram's red arrows

represent multiplication by a and its blue arrows represent multiplication by b. (Recall

the convention from Exercise 4.6 that arrows represent multiplication on the right.) In
such a diagram, ab is the combination of a red arrow and then a blue one, in that order,

while ba is the combination of a blue and then a red arrow. Commutativity stipulates

that ab D ba, and so from any node in the Cayley diagram, if you follow a red arrow

and then a blue one, you must arrive at the same point you would have if you had first

followed the blue arrow and then the red one. Figure 5.8 illustrates this visually.

**

Figure 5.8. On the left is a pattern that never appears in Cayley diagrams for abelian groups:
from the node marked �, following a red and then blue arrow does not reach the same node as
following a blue and then red. The pattern on the right will always appear instead.

The patterns in Figure 5.8 give us an easy way to spot abelian groups using Cayley

diagrams: Ensure that every pair of arrows leaving a node closes to a diamond shape,

as on the right of Figure 5.8. Whether or not the pattern appears laid out exactly in a

diamond shape is unimportant|it's the pattern of connections that matters. An example

will make this more clear.

Figure 5.9 shows Cayley diagrams for two slightly different groups. Look carefully

through the two diagrams in Figure 5.9 and see if you can find an instance of the left

pattern from Figure 5.8 in either one. If you find an instance of that pattern, you know

Figure 5.9. Cayley diagrams for two very similar groups, D4 and C2 � C4 . Test these groups

for commutativity by finding instances of the patterns in Figure5.8.
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Figure 5.10. The diagrams from Figure 5.9 reappear here, highlighted to show instances of the
patterns in Figure 5.8. The left diagram highlights an instance of the pattern that makes it non-

abelian: if a stands for red and b for blue, then ab ¤ ba because from �, ab leads to a different
destination than ba does. The right diagram highlights the analogous paths, but the pattern indicates

commutativity.

the corresponding group is not abelian. Recall that connections without arrowheads in

a Cayley diagram count as arrows in both directions. When you have finished, examine

Figure 5.10 and compare your answer to the explanation in its caption.

The straight lines in Figure 5.8 become smooth curves in Figure 5.10, but the pattern

of connections is the same. Note that the � element could have been placed anywhere
and similar patterns highlighted; Cayley diagrams embody a great deal of symmetry.1 In

Chapter 8 we will see how the visual patterns from Figure 5.8 lay the foundation for the

Fundamental Theorem of Abelian Groups.

5.2.2 Commutative multiplication tables

Abelian groups are easier to spot from their multiplication tables than from their Cayley

diagrams. Consider Figure 5.11, sketching a partial multiplication table, cut in half diag-

onally from top left to bottom right. Only the rows and columns for the elements a and b

are shown, and consequently the cells for both ab and ba, which are directly across the

diagonal dividing line from one another. The equation ab D ba requires that these two

cells must contain the same group element. That is, they must mirror one another, with

the diagonal dividing line acting as the mirror.

a

b

a b

ab

ba
sa

m
e

ab
=

ba

Figure 5.11. The equation ab D ba, which defines abelian groups, causes their multiplication

tables to be symmetric across the diagonal shown here.

1We will define this symmetry specifically in the next chapter, specifically in Definition6.1.



\master" | 2011/10/18 | 17:10 | page 71 | #85
i

i

i

i

i

i

i

i

5.2. Abelian groups 71

(0 0),

(0 0),

(0 0),

(0 1) (0 2), ,

(0 1),

(0 1),

(0 2),

(0 2),

(0 2),

(0 3),

(0 3),

(0 3),

(1 0),

(1 0),

(1 0),

(1 1),

(1 1),

(1 1),

(1 2),

(1 2),

(1 2),

(1 3),

(1 3),

(1 3),

(0 1), (0 2), (0 3), (1 0), (1 1), (1 2), (1 3),

(1 3),

(1 2),

(1 2),

(1 2),

(1 3),

(1 3),

(1 3),

(1 3),

(1 3),

(1 2),

(1 1),

(1 1),

(1 1),

(1 1),

(1 1),

(1 1), (1 0),

(1 0),

(1 0),

(1 0),

(1 0),

(1 0),

(0 3),

(0 3),

(0 3),

(0 3),

(0 3),

(0 3),

(0 2),

(0 2),

(0 2),

(0 2),

(0 2),

(0 1),

(0 1),

(0 1),

(0 1),

(0 1),

(0 1),

(0 0),

(0 0),

(0 0),

(0 0),

(0 0),

(0 0),

(0 0),

(1 2),

(1 2),

Figure 5.12. The symmetry of the table on the right tells us it is abelian. The left table does
not have the required diagonal symmetry.

Since this same pattern holds for any two elements a and b, the whole upper right

of the table (the white triangle) is mirrored in the lower left (the gray triangle). If you

folded the table in half along the diagonal dividing line, pairs of identical elements would

touch. Consider the two example multiplication tables in Figure 5.12; it is easy to spot

which of the two is abelian by looking for this kind of diagonal mirroring.

5.2.3 Intricate cycle graphs

Abelian groups that are not cyclic often have very interesting cycle graphs. Take a moment

to inspect those in Figure 5.13. Let's take a closer look at the simplest of them, the top

left one. It shows that C3 � C3 is composed of four three-step orbits, and Figure 5.14

shows where in the Cayley diagram for C3 � C3 we can find these orbits.

The top two orbits are fairly self-explanatory; they are the orbits of the red and blue

arrows, respectively. The other two orbits were constructed from sequences of red and

blue arrows, to visit nodes the first two orbits did not reach.

This cycle graph is an example of a general pattern. In Section 8.4 you will encounter

a famous theorem that will enable you to prove that for any prime number p, the cycle

graph of Cp �Cp will always have pC 1 orbits with p elements in each, all touching at

the identity.

But now it is time to leave the gentle realm of commutative groups and dip into some

of the rich complexity non-abelian groups can offer. The smallest step into that realm leads

to the dihedral groups. You have already seen the dihedral groupD4 on the right of Figure

5.9, and from that figure you can tell that although D4 is not abelian, it is very close.
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C3 � C3

C2 � C10

C4 � C4

Figure 5.13. Cycle graphs for three abelian groups
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Figure 5.14. In the center is the cycle graph of C3 �C3 , and next to each of the four orbits is

a copy of the Cayley diagram for C3 � C3 with the corresponding orbit highlighted. These Cayley

diagrams are structured like the original in Figure 2.10 on page 22.
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5.3 Dihedral groups

5.3.1 Things that flip (and spin)

While cyclic groups describe objects that have only rotational symmetry, dihedral groups

describe objects that have both rotational and bilateral symmetry. Objects have bilateral
symmetry if they look the same when flipped over (usually in a specific direction, such
as horizontally). Figure 5.2 showed that a propeller does not have bilateral symmetry|

flipping it over changes the space it occupies. The easiest geometric examples of objects

with both rotational and bilateral symmetry are regular polygons, several of which are

shown in Figure 5.15. \Regular" means that all their sides and angles are equal.

Figure 5.15. Regular polygons, from three- through seven-sided: triangle, square, pentagon,

hexagon, and heptagon.

A polygon with n sides is called an n-gon, and the dihedral group that describes the

symmetries of a regular n-gon is written Dn. All the actions in Cn are also actions in Dn

because rotating a regular polygon preserves the space it occupies. But because regular

polygons also permit flipping, we expect there to be more elements in Dn than in Cn,

and indeed there are. While Cn contains n actions, Dn contains twice as many, 2n. Let

us see what these n new actions do.

Recall that C3 described the symmetries of the three-armed molecule of Boric acid, as

in Figure 3.6. Let's compare this to the symmetries of a regular three-sided polygon, an

equilateral triangle. (If you did Exercise 2.18 this will seem familiar. If not, you may want

to create for yourself a numbered triangle to make it easier to follow along.) We've seen

that rotations respect the shape of the Boric acid molecule or a propeller or a pinwheel,

but horizontal flips do not (Figures 3.4, 3.5, and 5.2). Figure 5.16 shows that this changes

with an equilateral triangle; both rotations and flips respect its shape.

If we use only the rotation from Figure 5.16, the resulting group will be the copy of

C3 we already know to be in D3. If we call that clockwise rotation r , then our copy of

C3 is the orbit of r . Let us call the flip shown in Figure 5.16 f , and see what happens

3

12

1

32

1

23

1

23

=

=

Figure 5.16. Both rotations and horizontal flips respect the shape of the equilateral triangle.

The one shown here has its corners labeled to show the effects of those moves, as in Exercise2.18

(page 24).
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when we use it together with the orbit of r . From the starting position, if we flip the

triangle over, we reach a new position, one outside the orbit of r . From this position,

using r reaches two other new positions. These three new positions bring the total to six.

Applying f to any of these new positions returns us to the orbit of r , and therefore the

complete list of actions in D3 is e, r , r
2, f , rf , and r2f . Indeed, this is the process

you went through and carefully recorded in a Cayley diagram if you did Exercise 2.18.

5.3.2 Cayley diagrams for Dn

The leftmost Cayley diagram in Figure 5.17 shows D3 as just described. If that diagram

seems familiar (even apart from Exercise 2.18), it is because D3 has already appeared in

this book, but under the name S3 (Figure 2.10, page 22). Both names are common, and

you will learn the origin of the name S3 at the end of this chapter.

Dihedral groups come in many sizes, but as a family they share important structural

characteristics. Cayley diagrams for other dihedral groups resemble the one for D3, as

exemplified by the center diagram in Figure 5.17, showing D5. The rightmost diagram

in Figure 5.17 shows the pattern for an arbitrary Dn.

e

f

fr2fr

rr2

e

f

fr
r

fr4

fr3fr2

r4

r3 r2

e

f

fr

r

r2fr2 frn–2

frn–1

rn–2

rn–1

Figure 5.17. Cayley diagrams for the dihedral groups D3 (left) and D5 (center), as well as the

general scheme for Cayley diagrams of Dn (right).

The outer ring in each of these diagrams is the orbit of r , and is a copy of the cyclic

group Cn. The inner ring is a cycle of the same size, but pointing counterclockwise instead

of clockwise. To see the reason for this reversal, imagine yourself holding a triangle in

the initial configuration shown on the left of Figure 5.16. A friend stands facing you, and

you hold the triangle up between the two of you, so that you see the front face and your

friend sees the back. You can swap viewpoints with your friend by doing the f action to

the triangle. When you see the triangle in its initial configuration, your friend sees it in

its flipped configuration, the bottom right of Figure 5.16.

Your performing action r to the triangle will be different than your friend's doing it.

When your friend turns the triangle clockwise, it will look counterclockwise to you. It is

the same if you temporarily take the role of your friend by flipping the triangle, rotating

it clockwise, and flipping back: the overall effect is a counterclockwise rotation. To say

this algebraically, f rf D r�1.

The inner ring of the diagrams in Figure 5.17 represents your friend's point of view,

the one you can take on by performing action f , and put off again the same way. Thus the



\master" | 2011/10/18 | 17:10 | page 76 | #90
i

i

i

i

i

i

i

i

76 5. Five families

e r f

e

e

r e f

r

r

e r f

r 2

e r f

e r fr f

f e r

f

f

fr f e r

fr

fr

f e r

f e r

f r e

r 2

r 2

r 2r 2

r 2

r 2

r 2

r 2

r 2

r 2

r 2

r 3 r 3

r 3

r 3

r 3

r 3

r 3

r 3

r 3

r 3

r 3

r 3

fr3

fr3

fr3

fr3

fr3

fr3

fr3

fr3

fr3

fr3

fr3

fr3fr2

fr2

fr2

fr2

fr2

fr2

fr2

fr2

fr2

fr2

fr2

fr2

fr4 fr4

fr4

fr4

fr4

fr4

fr4

fr4

fr4

fr4

fr4

fr4

r 4

r 4

r 4

r 4

r 4r 4

r 4

r 4

r 4

r 4

r 4

r 4fr

fr

fr

fr

fr

fr

fr

fr

Figure 5.18. Multiplication table for the dihedral group D5

f actions connect the inner and outer rings. The r action rotates in the opposite direction

in the inner ring because the inner ring corresponds to a viewpoint from the other side of

the triangle, where clockwise and counterclockwise have been switched.

5.3.3 Multiplication tables for Dn

This separation of the elements of Dn into two categories|the inner and outer rings|is

also visible in multiplication tables. Consider the table for D5 in Figure 5.18. It is not

difficult to mentally divide this table into quarters by splitting it in half horizontally and

again vertically; in fact, the colors of the cells encourage you to do so.

This is because the headings in the table have been organized with those from the

Cayley diagram's outer ring listed first (e through r4) and its inner ring listed next (f

through f r4). This makes the upper left quarter of the table show only the interactions

among members of the outer ring. It's a copy of the multiplication table of C5, because

the outer ring of the Cayley diagram is a copy of C5.

This table will be analyzed further in the next section, and in Exercise 5.35.

5.3.4 A preview of Chapter 7

Consider the overall color pattern of Figure 5.18. The top left quarter uses the same

colors as the bottom right, and the bottom left matches the top right. This color pattern

clusters the elements that do not involve the flip f in two quadrants of the table, and

the elements that do involve f in the other two quadrants. If we call them \flip" and

\non-flip" elements for short, the clustering makes the following facts clear.

Any non-flip times a non-flip is a non-flip.

Any non-flip times a flip is a flip.

Any flip times a non-flip is a flip.

Any flip times a flip is a non-flip.
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Figure 5.19. Multiplication table for D5 with annotation that clusters elements according to

whether they involve a flip. The resulting two-by-two pattern matches the multiplication table for

the group of order two, shown on the right.

Annotating the table to illustrate this pattern results in Figure 5.19, a simple two-by-

two table overlayed on the original ten-by-ten table. This two-by-two table is actually the

multiplication table for the only group of order two.

The color pattern in the multiplication table for D5 revealed within that table the

structure of a smaller group, C2. Shrinking a group this way is called taking a quotient,
and we have only previewed it here. Group quotients and the complementary notion of

group products are central to the study of groups, and Chapter 7 will cover both notions

thoroughly. We'll learn that a dihedral groupDn can be obtained by combining the groups

Cn and C2 using what's called a semidirect product, and the quotient in Figure 5.19 is
reversing that product operation.

5.3.5 Cycle graphs for Dn

Before we move beyond dihedral groups, let's examine their cycle graphs, to solidify

our understanding of the roles of the elements in Dn. Figure 5.6 shows that the orbit of

r in D3 contains three elements, and each element outside that orbit is in a little orbit

consisting only of itself and the identity. For larger dihedral groups than D3, this pattern

continues. Dn consists of an r orbit of size n, and n other elements each in an orbit of

size two. Let us see why this is so.

Any element of Dn that's not in the orbit of r can be written as f r
m for some number

m between 0 and n�1. (If you can't recall why this is so, look back at Figure 5.17.) I will
explain why doing the action f rm twice has the same result as doing nothing. Recall the

description from Section 5.3.2 of you and a friend holding a triangle. That example taught

us that performing the action f rf is the same as performing the action r in reverse. It did

so by having us realize that surrounding r with f 's was like taking on the role of our friend,

who faces the opposite direction. The same argument applies to surrounding rm with f 's,
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e
f

r2

fr

r

fr2
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e
f

r

fr2
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r2rn–2

rn–1

fr n–2

fr n–1

Figure 5.20. Cycle graphs for D4, D5, and the general pattern for Dn

and so f rmf is the same as rm in reverse. Consequently, f rmf followed by rm returns

the triangle to its original position. Algebraically, we can either write it as f rmf D r�m

or as f rmf rm D e. Both signify that f rm done twice returns to the original state.

This explanation did not depend on the fact that the regular polygon in question was a

triangle; it could have been a pentagon, square, or any other regular polygon. So in anyDn,

every element outside the orbit of r will have its own two-step orbit. This makes the cycle

graph of Dn look like one ring of size n with many two-element orbits connected to it at

the identity. Examples for D4, D5, and the general pattern for Dn appear in Figure 5.20.

Now it's time to move on from Dn, which has been our first exposure to a family of

non-abelian groups. As you recall from Figure 5.9, the dihedral groups are structurally

very close to being abelian, and are therefore not very complex. The following section

opens the floodgates, letting in the full measure of the complexity of group theory.

5.4 Symmetric and alternating groups

Many groups we've seen in this book have been collections of ways to rearrange things.

Chapter 1's exercises had you rearranging coins on a table and paintings on walls. It also

talked about Rubik's Cube, which we can think of as rearranging colored stickers. In

Chapter 3, we numbered the parts of symmetric objects so that manipulations of those

objects could be analyzed as rearrangements of the numbers. Rearrangements, which

mathematicians call permutations, are intimately tied to group theory in two ways. First,
we will meet two important families of groups, the symmetric and alternating groups,

that can be built from permutations in a natural way. Then we will see a visual proof

of Cayley's theorem, which says that permutations are a powerful enough tool that from

them we can build any group.

5.4.1 Permutations

A permutation is an action that rearranges a collection of things. Permutations can de-
scribe the shuffling of cards in a deck, a rearrangement of the letters in a word, or the

way you sort the CDs on your shelf. Mathematicians usually refer to permutations of

small positive integers, partly just to make permutations easy to write down.
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1 2 3 4 1 2 3 4 1 2 3 4

Figure 5.21. Three example permutations of the numbers 1, 2, 3, and 4. For example, the leftmost
one permutes the elements by moving each one step to the right, but moving 4 all the way to the

left. The central permutation does not alter the positions of 1 or 4, but swaps the other two numbers.

Following this convention, let's assume we have four things we can rearrange, 1, 2,

3, and 4. A few example ways to permute these numbers are shown in Figure 5.21. There

are many notations mathematicians use to represent permutations, but we will use the

notation in Figure 5.21.

5.4.2 Permutation groups

Permutations cooperate well with the original requirements we put on groups, in Definition

1.9 on page 7. If we take all permutations of a certain collection of things (such as the

numbers 1, 2, 3, and 4), we clearly have a predefined, unvarying list of actions (satisfying

Rule 1.5), each of which is unambiguous (satisfying Rule 1.7). Furthermore, the work of

any two permutations done in succession can just as easily be done by one permutation,

the combination of the two (satisfying Rule 1.8). Figure 5.22 exemplifies how any two

permutations can be combined. Lastly, every permutation is reversible (satisfying Rule

1.6), as Figure 5.23 shows by example. So there is a good reason why so many examples in

this book have involved rearranging things: permutations are natural group-building tools.

This permutation followed by this one equals this one.

1 2 3 4 + 1 2 3 4 = 1 2 3 4

1 2 3 4 + 1 2 3 4 = 1 2 3 4

Figure 5.22. Two examples of combining two permutations to form a new one. In the top row,
the first permutation moves 1 to 2, which the second permutation moves to 3, so their combination

must move 1 to 3. In the bottom row, the first permutation moves 1 to 2, which the second

permutation leaves untouched, so in combination, they move 1 to 2. Try following the paths of 2,

3, and 4 through each pair of combined permutations yourself.

For instance, Exercise 1.4 asked you to count all possible ways to rearrange three

paintings on three walls. Exercise 2.5 built on Exercise 1.4, asking you to you draw a

Cayley diagram for that group, and Exercise 4.8 asked you to make its multiplication

table. In this chapter we've seen that this group has the name D3, but in earlier chapters

we called it by its more common name, S3. The S stands for symmetric, because the

group of all permutations of a given size is called a symmetric group. So Sn represents

the group of all permutations of n things.

We've seen a diagram of S3, but have not yet encountered other members of the

symmetric group family. The smallest members of the family, S1 and S2, you will analyze

yourself in Exercise 5.18, but the larger Sn groups are both complex and intriguing. Their
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Permutation Inverse permutation

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Figure 5.23. Two examples of permutations alongside their inverses. Try combining each

permutation shown here with its inverse, in the way Figure5.22 combines permutations. The result

will always be the permutation that moves no numbers.

size increases quickly; the order of Sn is n factorial (written nŠ, meaning the product

of all whole numbers from 1 to n). Thus S4 has order 1 � 2 � 3 � 4 D 24 and S5 has

order 1 � 2 � 3 � 4 � 5 D 120. Cayley diagrams for groups as large as S5 can be tangled

and hard to draw, but the Cayley diagram for S4 is still small enough to admit a very

pleasing arrangement, shown in Figure 5.24. As you will read in the next section, it is no

coincidence that it looks cube-like.

1 2 3 4

1 2 3 4

Figure 5.24. A Cayley diagram for S4 arranged on a cube with clipped corners (usually called

a \truncated cube"). The legend on the right shows which permutations in S4 the arrows represent.

Node labels were omitted to eliminate clutter.

Although the collection of all permutations of n items forms a group, creating a

group of permutations does not require taking all permutations of a given size. It is often
possible to form a group from just some of the permutations from Sn. One famous way is

to take exactly half of the elements of Sn, creating what is called an alternating group.
Not just any half will do; random choosing will rarely result in a group. But if you take

every element in Sn and square it, that collection of squared elements will be exactly half

of Sn, an alternating group called An. The creation of A3 from S3 is shown in Figure

5.25. As you recall from Exercise 4.21 there is only one structure for groups of order 3,

so A3 has the same structure as the cyclic group C3.

5.4.3 The Platonic solids

There are only five three-dimensional shapes all of whose faces are regular polygons that

meet at equal angles. We call them the Platonic solids, and you can see renderings of
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Original element The element squared

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

Figure 5.25. The left column shows all the elements of S3 as permutations, and the right column

shows all their corresponding squares. Because four of the six elements square to the identity (the

permutation that moves nothing around, the \no action"), the right column contains only three

distinct elements. Those three elements comprise the group An.

them in Figure 5.26. I bring them up now to show their connection to the symmetric and

alternating groups.

Recall the technique Chapter 3 taught for classifying the symmetries of any three-

dimensional object. We applied it to molecules and dancers and other things, and we

could apply it to the Platonic solids. Exercise 5.25 asks you to try this for the tetrahedron,

and helps you out with a diagram. Applying the technique to the other Platonic solids,

especially the icosahedron or dodecahedron, is a bookkeeping challenge. This work has

already been done, and we will see the results.

Tetrahedron Cube Octahedron Icosahedron Dodecahedron

Figure 5.26. The five platonic solids, the only three-dimensional objects that are comprised

of faces made of the same regular polygon repeated, connected to one another at the same angle

throughout. Each solid is shown from two different angles, to help indicate depth.
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1 2 3 4

1 2 3 4

Figure 5.27. A Cayley diagram for A4 arranged on a truncated tetrahedron. The legend on the

right shows which permutations in A4 the arrows represent. As in Figure 5.24 and Figures 5.28

and 5.29, node labels are omitted to eliminate clutter.

The symmetry group for the tetrahedron is A4, half of all permutations of four items.

We can lay out a Cayley diagram for A4 in a way that makes its connection to the

tetrahedron clear; see Figure 5.27. The cube and octahedron have the same symmetry

group, S4. This is why it is no coincidence that the Cayley diagram for S4 in Figure 5.24

looked cube-like. It is possible to arrange the diagram like an octahedron by using arrows

that refer to different permutations; compare Figures 5.24 and 5.28. The dodecahedron

and icosahedron also share a symmetry group, A5, of order 60. Its Cayley diagram can

therefore be tailored to suggest either shape, as shown in Figure 5.29.

1 2 3 4

1 2 3 4

Figure 5.28. A Cayley diagram for S4 arranged on a truncated octahedron. (Compare to Figure

5.24, a truncated cube.)

So groups of permutations are important in group theory. We saw that permutations

can be used to form groups very easily, by simply taking all permutations of a given size.

We called these groups the symmetric groups Sn, and then took exactly half of each Sn

to form the alternating groups An. Then we saw that some members of the Sn and An

families describe the symmetries of some beautiful shapes, the five Platonic solids. But

beyond even all this, there remains a yet more significant way that permutations relate to

group theory. Cayley's theorem states that relationship.
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1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 5.29. Two Cayley diagrams for A5, one arranged on a truncated icosahedron and the

other on a truncated dodecahedron. To make this possible, the arrows represent different elements

in the one diagram than in the other.

5.4.4 Cayley’s Theorem

At the beginning of Section 5.4, I stated that permutations can be used to construct any

group. This statement effectively says that all of group theory can be found in permu-

tations, a fact known as Cayley's theorem. As a first step toward proving this theorem,

let's see how every Cayley diagram and multiplication table expresses a collection of

permutations.

Consider the Cayley diagram for S3 on the left of Figure 5.30. The nodes in the

diagram have been numbered 1 through 6 to make it easy to talk about permutations

of them using familiar notation. Each color of arrows in the diagram can be interpreted

as a permutation: The red arrows move 1 to 2, 2 to 3, 3 to 1, 4 to 6, and so on. The

permutation representing this is on the top right of Figure 5.30. The blue arrows in the

diagram for S3 interchange pairs of nodes, and the permutation representing this appears

below the red one. To create these permutations from the diagram, I've just written the

numbers from the diagram's nodes in order in a row, 1 to 6, and connected them with

arrows the same way the diagram connects them.
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1

4

3

56

2

1 2 3 4 5 6

1 2 3 4 5 6

Figure 5.30. A Cayley diagram for the group S3 , with nodes numbered 1 through 6 to facilitate
analyzing how the arrows permute the elements (shown to the right)

Cayley's theorem says that these two permutations embody the relationship among

the six elements of S3. That is, if we create a group from the two permutations in Figure

5.30, we will find that the combinations of those permutations with one another form a

six element group with the same structure as S3. Furthermore, the red permutation will

behave in that group the same way that r behaves in S3, and the blue permutation will

behave like f in S3. Two groups with the same structure are called isomorphic, a term
we will use loosely for now, and study in Chapter 8. We have not yet proven any of this,

but we are about to. First, let us see how it relates to multiplication tables.

In Figure 5.30 I created permutations from the arrows in a Cayley diagram, which

represent right multiplication. What part of a multiplication table shows us right multipli-

cation? Consider the multiplication table for the group V4 in Figure 5.31, with elements

renamed 1 through 4 to make it easier to relate to permutations.

1 2 3 4

1

1

2 1 4 3

2

2

3 4 1 2

3

3

4 3 2 1

4

4

Column 1: 1 2 3 4

Column 2: 1 2 3 4

Column 3: 1 2 3 4

Column 4: 1 2 3 4

Figure 5.31. A multiplication table for the group V4, with nodes numbered 1 through 4 to

facilitate analyzing how the arrows permute the elements. The permutation for each arrow color is

shown on the right.

Each cell contains the result of its row heading times its column heading. So one

column in a multiplication table contains the results of multiplying each row heading by

the same column heading. For instance, the column labeled 3 in the multiplication table in

Figure 5.31 contains the results of each group element multiplied on the right by 3. That

column contains a complete record of what right multiplication by 3 means in V4. Notice

that the column is simply a reordering of the numbers 1 through 4, a permutation. (Your
answer to Exercise 4.15 explains why each column in a multiplication table is always a

reordering of the elements.) That column turns a 1 into a 3, a 2 into a 4, a 3 into a 1,

and a 4 into a 2. We can represent it by the following permutation.
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1 2 3 4

So each column in a multiplication table is a permutation of the row headings. The four

permutations represented by the four columns of the multiplication table in Figure 5.31

are on the right of that same figure.

Notice that we could apply the procedure exemplified in Figure 5.30 to any Cayley di-

agram, and we could apply the procedure exemplified in Figure 5.31 to any multiplication

table. The important difference is that from a multiplication table we do not obtain simply

a few permutations we could use to build a group by combining them with each other, but

rather the full set of permutations that form the group. This difference arises because the

column headers of a multiplication table contain every group element, whereas the arrows

in a Cayley diagram usually only depict a set of generators. Cayley's theorem states that

in both cases, the resulting group will have exactly the same structure as the original. It

is now time to see why Cayley's Theorem is true. We begin with a proof based on the

visual computations in Figures 5.30 and 5.31, then illustrate that proof in Figure 5.32.

Theorem 5.1 (Cayley). Every group is isomorphic to a collection of permutations.

Proof. We have just seen that from the columns of any group's multiplication table, we
can create a permutation for each element of the group, as Figure 5.31 exemplifies. We

can also make a multiplication table out of those permutations. This proof explains why

such a multiplication table must behave the same as the original.

To make it easy to refer to them, let's say the group's elements are numbered 1 through

n, with 1 standing for the identity, just as in Figure 5.31. We also need a way to refer

to the permutations we created, one created for each element of the original group as in

Figure 5.31. So let's write p1 for the permutation for column 1, p2 for the permutation

created from column 2, and so on. Let's compare two multiplication tables, the original

one containing the numbers 1 through n, and a new one containing the permutations p1

through pn.

Imagine we're looking at the entry in the row for pi and the column for pj in the

new table, and the cell contains pk . That is, the table is saying pi � pj D pk . I will now

give evidence that these permutations faithfully represent the elements from which we

created them; that is, that the original table must say that i � j D k.

Consider how the permutations treat the identity element from the original group.

Because pk represents the \multiply by k" column in the table, applying pk to 1 means

multiplying 1 by k. To say this with an equation, pk.1/ D 1 � k D k. Similarly, doing

pi � pj to 1 means multiplying 1 by i and then j , as follows.
2

pi � pj .1/ D 1 � i � j D i � j

Because pi �pj D pk , we know that pk.1/ and pi �pj .1/ must result in the same answer.

Because the former is k and the latter is i � j , that means i � j D k.

So any equation like pi � pj D pk from the table of permutations is an imitation of

an equation from the original group, i � j D k. Thus the entire permutation group follows

the same pattern as the original group, as the theorem states.

2 For the detail-oriented: I have just revealed my convention for function composition. Since I use f ı g to

mean \f then g ," I am using the convention .f ı g/.x/ D g.f.x//.
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 41 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 41 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 41 2 3 4

1 2 3 4

1 2 3 4

Figure 5.32. A multiplication table made up of the permutations created in Figure 5.31. Each
cell highlights the destination to which the permutation sends 1, using the corresponding color from

Figure 5.31, emphasizing what the colors of the arrows already showed: The two tables contain the

same pattern.

This proof can be summarized as two steps: Create a permutation for each column in

a group's multiplication table, and then inspect how those permutations treat the group's

identity element. Figure 5.32 illustrates these two steps. It shows a multiplication table

comprised of the permutations from Figure 5.31, and each cell of the table highlights the

result of applying the permutation to the identity element 1. The correspondence between

Figures 5.31 and 5.32 is clear: If I remove all but the highlighted elements from Figure

5.32, all that remains is the multiplication table from Figure 5.31.

5.4.5 Summary

Think how much you've learned in this chapter! You met five famous families of groups,

together with the sizes, Cayley diagrams, and multiplication tables of many of them.

You learned cycle graphs, permutations, and the proof of one of the most fundamental
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theorems in group theory. As promised at the outset, the library of groups you now know

should give you a much better ability to answer questions like those on page 63. Try

your new knowledge out on such questions in the following exercises, particularly those

in Section 5.5.5.

5.5 Exercises

5.5.1 Basics

Exercise 5.1. If a group is generated by just one element, what kind of group is it?

Exercise 5.2.

(a) In the group C5, compute 2C 2.

(b) In the group C5, compute 4C 3.

(c) In the group C10, compute 8C 7.

(d) In the group C10, compute 9C 1.

(e) In the group C3, compute 2C 2C 2C 2C 2C 2.

(f) In the group C11, compute 10� 8C 1 � 7C 6C 5.

Exercise 5.3. For each statement below, determine if it is true or false.

(a) Every cyclic group is abelian.

(b) Every abelian group is cyclic.

(c) Every dihedral group is abelian.

(d) Some cyclic groups are dihedral.

(e) There is a cyclic group of order 100.

(f) There is a symmetric group of order 100.

(g) If some pair of elements in a group commute, the group is abelian.

(h) If every pair of elements in a group commute, the group is cyclic.

(i) If the pattern on the left of Figure 5.8 appears nowhere in the Cayley diagram for a

group, then the group is abelian.

Exercise 5.4.

(a) Use the Cayley diagram of the group D5 in Figure 5.17 to compute r � f � r in that
group.

(b) Is the answer the same or different if you do the computation in the group D3 instead?

(c) Is the answer the same or different if you do the computation in the groupDn instead?

(d) In this chapter, I introduced Dn as a group satisfying f rf D r�1. Use that equation

to prove your answer to part (c).

Exercise 5.5. Compare the strengths and weaknesses of the three visualization techniques

introduced in this book: Cayley diagrams, multiplication tables, and cycle graphs.
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88 5. Five families

5.5.2 Understanding the families

Exercise 5.6. Sketch the following visualizations.

(a) a cycle graph for C9

(b) a Cayley diagram for D4

(c) a multiplication table for D2

Exercise 5.7. Describe in words what each of the following visualizations looks like for

C999.

(a) Cayley diagram

(b) multiplication table

(c) cycle graph

Exercise 5.8. Describe in words what each of the following visualizations looks like for

D999.

(a) Cayley diagram

(b) multiplication table

(c) cycle graph

Exercise 5.9. What are the orders of the first ten symmetric groups, S1 through S10?

What are the orders of their corresponding alternating groups, A1 through A10? Explain

your answer for the order of A1.

Exercise 5.10. The exercises for Chapter 3 asked you to create several Cayley diagrams.

This chapter introduced a method for telling whether a group is abelian based on its

Cayley diagram.

For each of the Chapter 3 exercises mentioned below, first determine whether each

Cayley diagram from that exercise represents an abelian group. Then determine whether

the group belongs to any of the five families introduced in this chapter, and if so, what

the group's name is (e.g., D4, S3, etc.). Explain how you determine each of your answers.

(a) Exercise 3.5

(b) Exercise 3.6

(c) Exercise 3.7

(d) Exercise 3.8

(e) Exercise 3.11

(f) Exercise 3.13

(g) Exercise 3.14

(h) Exercise 3.16

Exercise 5.11. Explain why every cyclic group is abelian.



\master" | 2011/10/18 | 17:10 | page 89 | #103
i

i

i

i

i

i

i

i

5.5. Exercises 89

Exercise 5.12. Why is it sufficient, when looking to see if a Cayley diagram represents

an abelian group, to only consider the arrows? Why do we not need to examine every

possible combination of paths?

Exercise 5.13.

(a) Create a cycle graph for the group V4 using the multiplication table in Figure 5.31.

(b) Create a cycle graph for the group A4 using the Cayley diagram in Exercise 4.6 part

(c).

Exercise 5.14.

(a) Is there a dihedral group of order 7?

(b) If An has order 2520, what is n?

(c) If An has order m, what order does Sn have?

Exercise 5.15. For each part below, compute the orbit of the element in the group. Your

answer will be a list of elements from the group that ends with the identity.

(a) The element r2 in the group D10

(b) The element 10 in the group C16

(c) The element 25 in the group C30

(d) The element 12 in the group C42

(e) The element s in the group whose Cayley diagram is on the left below. (Assume the

element a at the top left is the identity.)

(f) The element l in the group whose Cayley diagram is on the right below. (Assume the

element a at the top is the identity.)

a b

k

hg

c

p

om

j

l

i

d

f

s t

n

rq

e

a

b
i

l

j

c

d

o

m

k

e

g

p

n

f

h

Exercise 5.16. Recall the notation for generators from Exercise 4.25. Use it to fill in

the blanks below with however many elements are necessary to generate the group. Use

as few elements as possible.

(a) Cn D f0; 1; : : : ; n� 1g D h i

(b) Dn D fe; r; : : : ; rn�1; f; f r; : : : ; f rn�1g D h i
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90 5. Five families

5.5.3 Small examples

Many of the smallest members of the families Dn, Sn, and An do not display the char-

acteristic complexities of larger members of those families. The following exercises ask

you to investigate the simplest (i.e., smallest) dihedral, symmetric, and alternating groups.

Exercise 5.17. Create multiplication tables for the smallest dihedral groups D1, D2,

D3, and so on, until you find the first non-abelian member of the family. Which is it,

and how can you tell?

Exercise 5.18. Repeat Exercise 5.17 for the symmetric groups Sn. Use the permutation

notation from this chapter.

Exercise 5.19. For each symmetric group whose multiplication table you created in

Exercise 5.18, compute the elements of the corresponding alternating group, as in Figure

5.25. For each alternating group you compute, create

(a) a multiplication table,

(b) a Cayley diagram, and

(c) a cycle graph.

Exercise 5.20. Some of the smallest members of the families Cn, Dn, Sn, and An

actually belong to more than one family, as long as we do not care about the names of the

elements, but about the group structure. For instance, D1 is a group with two elements,

and its multiplication table has the same pattern as that of C2, as shown here.

e f

e

e

f e

f

f

0 1

0

0

1 0

1

1

What other groups belong to more than one of the families we studied in this chapter?

(Another way to read this question is, \Are there any groups in one of the families Cn,

Dn, Sn, or An that are isomorphic to a group in another of those families?")

Exercise 5.21. For each of the following questions, either exhibit a group that answers

the question in the affirmative or give a clear explanation of why the answer to the

question is negative.

(a) Is there a cyclic group with exactly four generators? (Not that it takes four elements

to generate the group, but that there are four different elements a; b; c; d in Cn and

Cn D hai D hbi D hci D hd i.) Is there more than one such group?

(b) Is there a cyclic group with exactly one generator? Is there more than one?

Exercise 5.22. Open Group Explorer and sort the group library by order, with the
smallest groups on top. Where in the list do you find the first group that's not in any of

the families this chapter introduced? What is its name and size? How can you tell that

it's not in any of the families you just learned?
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5.5.4 Going a bit further

Exercise 5.23. This chapter gave propellers and pinwheels as examples of objects whose

symmetries are described by cyclic groups, that is, objects with rotational symmetry only.

What other objects fit in this category?

Exercise 5.24. This chapter gave regular polygons as examples of objects whose sym-

metries are described by dihedral groups, that is, objects with both rotational and bilateral

symmetry, but no other symmetries. What other objects fit in this category?

Exercise 5.25. Analyze the symmetries of a tetrahedron using the technique from Defi-

nition 3.1, resulting in the Cayley diagram for its symmetry group. Here are a few hints

to get you started.

First, if you need a tetrahedron, copy the following pattern onto a separate sheet, cut

along the solid lines, and fold along the dotted lines. Keep the numbers on the outside

of the figure as you fold, and the 1's should join to form the fourth vertex of the three-

dimensional shape. You may need tape to hold that vertex together.

1 12 2

3
3

4
4

43

2

Second, decide on an orientation for the tetrahedron before you begin. For example,

you might always keep one of its faces flat on the tabletop in front of you, and another

facing up towards you. Obviously, as you manipulate the shape, it will change which face

is on the tabletop or facing you.

Third, if you want your Cayley diagram to resemble the one in Figure 5.27, use the

following two moves. One move is a 120-degree rotation of the tetrahedron about whatever

vertex is pointing up, as shown on the left below. The other is a 180-degree rotation of

the tetrahedron performed by putting two fingertips at the midpoints of opposite edges

(edges that do not touch one another), as shown on the right below.

Exercise 5.26. As you know from the chapter, the symmetry group for the tetrahedron

is A4. We can think of it, as you saw in Exercise 5.25, as permuting four vertices. What

physical features of the tetrahedron prevent its symmetry group from being all of S4?
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92 5. Five families

Exercise 5.27. As you know from the chapter, S3 and D3 are two different names for

the same group. Yet no larger dihedral group is also a symmetric group. Give an argument

based on the physical features of an n-gon for why this is so (n � 4).

Exercise 5.28. Section 5.2.3 describes what the cycle graph will look like for Cp � Cp

if p is a prime number. Draw the cycle graph for C5 � C5. (It is not necessary to label

the elements.)

Exercise 5.29. Each part of this problem should help you answer the later parts.

(a) Is it true that any a in Cn will generate the whole group, i.e., Cn D hai? Why or
why not? If not, for which elements a in which groups Cn is it false?

Hint: Although it is quite possible to solve this problem with what you know now, if

it seems too tricky for the moment, come back to it after you've read Section8.4.

(b) For how many different pairs a; b inD3 can you writeD3 D ha; bi? What if I change
the D3 to Dn?

(c) You may have noticed that D3 D hrf; r2f i, which for the moment I will rewrite as
hrf; r�1f i. Does this same set of generators generate any other Dn? Which ones,

and how do you know?

Exercise 5.30. In Exercise 4.32 you were introduced to the set Z, which is a group

under the operation of ordinary addition.

(a) Create a Cayley diagram for it.

(b) Create a cycle graph for it.

(c) Is it abelian?

(d) Are there any objects whose symmetries it describes?

Exercise 5.31. The group Z from the previous exercise is considered an infinite cyclic

group. What do you think an infinite dihedral group would be like?

Exercise 5.32. In Exercises 4.32 and 4.33 you investigated some infinite groups of

numbers. Are any of them abelian?

5.5.5 Going beyond

Exercise 5.33. The notation for generating a group, introduced in Exercise 4.25, can be

extended to what are called \group presentations" by adding equations that describe how

the elements relate. For example, the presentation for S3 is

hr; f j r3 D 1; f 2 D 1; f rf D r�1i:

We can think of this as specifying a Cayley diagram; the r; f tells there will be two arrow

colors (one for r and one for f ) and the equations that follow tell us how those arrows

tie together. The first two, r3 D 1 and f 2 D 1, tell you the orders of the generators, and

the last equation tells you how the generators relate. Such a presentation gives you all the

information you need to construct a Cayley diagram for S3, step-by-step.
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(a) Explain how the information from the presentation

hr; f j r3 D 1; f 2 D 1; f rf D r�1i

enables you to create each step of a Cayley diagram for S3. That is, go through

the step-by-step process and write down both the steps and how you concluded the

information you needed at each step.

(b) Repeat part (a) for the presentation hr; f j r4 D 1; f 2 D 1; f rf D r�1i, which is
only different in that the 3 changed to a 4. What group is this?

(c) What group has the presentation ha j an D 1i?
(d) What is the presentation for Dn?

(e) Sketch a Cayley diagram for the group ha; b j a4 D 1; b4 D 1; a2 D b2; bab D a�1i.
Exercise 5.34. This exercise gives you a different look at S3 and S4 by looking at them

using a different set of generators than we have up until this point.

(a) The group S3 can be generated by the following two permutations. Make a Cayley

diagram for S3 whose arrows represent these elements.

1 2 3 1 2 3

(b) The group S4 can be generated by the following three permutations. Make a Cayley

diagram for S4 whose arrows represent these elements. Hint: It can be laid out as a

truncated octahedron, similar to Figure 5.28, but with three arrow colors.

1 2 3 4 1 2 3 4 1 432

(c) What conjecture does this lead you to make about generating Sn?

Exercise 5.35. This exercise analyzes the multiplication table for D5 in Figure 5.18,

relating it to a Cayley diagram for that same group, shown in the center of Figure 5.17. It

begins with a generic question that will help us relate multiplication to Cayley diagrams,

and the remaining parts apply it to D5.

(a) Consider an equation like a � b D c about the elements a, b, and c in a group. What

part of a multiplication table for the group expresses the information a �b D c? What

part of a Cayley diagram for the group expresses the same information?

(b) The upper left quarter of the multiplication table for D5 in Figure 5.18 corresponds

to what portion of the Cayley diagram for D5 in Figure 5.17? Justify your answer

here using your answer from part (a).

(c) The lower left quarter of the multiplication table for D5 in Figure 5.18 corresponds

to what portion of the Cayley diagram for D5 in Figure 5.17? Justify your answer

here using your answer from part (a).

(d) Why do the diagonal stripes in the right half of the table in Figure 5.18 slant opposite

to those in the left half of the table? This part's answer, too, can be justified using

your answer from part (a).
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94 5. Five families

Exercise 5.36.

(a) Is there a group in which no element (other than the identity) is its own inverse?

(b) The previous question was one of the three from page 63. Answer the other two as

well.

(c) In every group, any two orbits touch at the identity. Is there any group containing two

orbits that touch only at the identity? Is there any group containing two orbits that

touch at the identity and at exactly one other place?

(d) Find a group with at least two elements in it, and only one solution to the equation

x2 D e, the solution x D e.

(e) Find a group that has exactly two solutions to the equation x2 D e.

(f) Find a group that has more than two solutions to the equation x2 D e.

(g) Find a group with at least two elements in it, and only one solution to the equation

x3 D e, the solution x D e, or explain why no such group exists.

(h) Find a group that has more than two solutions to the equation x3 D e, or explain

why no such group exists.

(i) Find a group that has exactly two solutions to the equation x3 D e, or explain why

no such group exists.

Exercise 5.37.

(a) There are two different groups of order 6. What are their names? Specify which, if

any, are abelian.

(b) If there is only one group of a given order, to what family must it belong? Why?

(c) Find some values of n for which there is only one group of order n. Can you see

a pattern among the numbers you found? (Chapter 7 will talk about the pattern that

exists.)

Hint: The group library in Group Explorer may speed your search.

Exercise 5.38. Prove using algebra that if every element in a group has order 2, then

the group is abelian.

Exercise 5.39. In finite groups, the orbit of an element can be defined as all the positive

powers of that element; the orbit of a is
˚

a1; a2; a3; a4; : : :
	

, a sequence which cannot

go on infinitely. Because the group is finite, eventually one of the elements encountered

(maybe a20, maybe a1000, maybe later) must be a repetition of an element already on the

list. Explain why this means that some power of a must equal e.

Exercise 5.40. The parts of this exercise ask you to explore the relationship among

the elements in D4, and how different layouts of its Cayley diagram can show those

relationships in different ways. Begin with the Cayley diagram you created for D4 in

Exercise 5.6. Ensure that it follows the pattern given in Figure 5.17.
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(a) Make another copy of this diagram with one change: Reorder the elements of the

inner ring so that the arrows representing r point clockwise in that ring, as they do in

the outer ring. In order for it to still be a Cayley diagram of D4, you must preserve

the same pattern of connections. Therefore some of your f arrows will be stretched

by this new layout, but try to stretch them as little as possible.

(b) Make another copy of the diagram, but this time arrange the nodes in two horizontal

rows, the top row proceeding through the orbit of r starting from e, and the bottom

row connected to the top row by four parallel f arrows.

(c) Make another copy of this two-row diagram, but this time arrange the bottom row

so that each element f rm is below the corresponding element rm for every number

m (between 0 and 3). The f arrows will no longer be parallel, but try to make it as

organized as possible.

(d) For each of these three new ways of laying out the dihedral group D4 (parts (a)

through (c)), explain what the Cayley diagram for an arbitrary dihedral group Dn

would look like if laid out similarly.

(e) In Group Explorer, open a Cayley diagram for the group D4. It defaults to the pattern

from Figure 5.17. How can you instructGroup Explorer to reorganize the nodes of the
diagram in the same ways you did in this exercise? (You may need to refer to Group
Explorer's built-in help system for information on manipulating Cayley diagrams.)

5.5.6 Cayley’s theorem

Exercise 5.41. The following applications will give you some hands-on experience with

Cayley's theorem.

(a) Extract from the multiplication table of C2 � C4 shown on the right of Figure 5.12

the eight permutations in S8 that behave like a copy of C2 � C4. You may want to

make a copy of the table with the elements numbered from 1 to 8; the example in

Figure 5.31 may help.

(b) Extract from the Cayley diagram of D5 in Figure 5.17 the two permutations that

describe its arrows, following the example of Figure 5.30. Here it may also be useful

to number the elements, 1 to 10.

(c) Take the two permutations shown in Figure 5.30 and make a multiplication table

from them and all their combinations. Organize your table and highlight what each

permutation does to the identity element, as in Figure 5.32. The result should make

it clear that the multiplication table you created is one for D3, as shown in Figure

2.10 (under the name S3).

Exercise 5.42. Cayley's theorem says that any group is isomorphic to a collection of

permutations. If we restrict ourselves to only using permutations of three items (i.e., ele-

ments of S3), what groups can we form? For instance, we can obviously create all of S3

by taking every permutation of three elements, and we can obviously create the group C1

by just taking the identity permutation from S3. What other groups are possible?



\master" | 2011/10/18 | 17:10 | page 96 | #110
i

i

i

i

i

i

i

i

96 5. Five families

Exercise 5.43. Repeating Exercise 5.42 for S4 would be lengthy, so rather than ask you

to search blindly, I will give you hints. All of the following groups can be built using

collections of permutations of four things (i.e., elements of S4). Find the appropriate

collection of permutations for each group given.

(a) every group of order 1, 2, 3, or 4 (for a total of five groups)

(b) the group D4

Hint: Apply the technique from Chapter 3 to a square. Recall Exercise 2.8.

(c) the group A4

Exercise 5.44. Although you can find a copy of C6 in S6 by simply taking the orbit of

the permutation shown here,

1 2 3 4 5 6

that is not the most \efficient" way to embed C6 in an Sn. The following permutation in

S5 also has order 6, and therefore its orbit is a copy of C6 as well.

1 2 3 4 5

Thus we can fit C6 in S6 in an obvious way, or in C5 with a little cleverness. So although

the easiest way to embed Cn in a symmetric group is by taking a permutation that cycles

the elements of Sn, for some n there is a way to embed Cn in a smaller symmetric group.

(a) For each n between 1 and 12, determine the smallest value of m such that Cn can be

expressed in Sm. Can you find any pattern or determine any strategy for computing

m from n?

(b) Does your answer change if instead of a copy of Cn, you must find in Sm a copy of

Dn?
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Subgroups

Though the chapter title may not suggest it, you've come to the exciting part of this book!

Through five chapters, you've gained a lot of familiarity, learned the lay of the group

theory land, and are now ready for in-depth study. Starting with this chapter, we'll be

getting more analytical and learning more mathematical terminology, but without giving
up our visual roots. Entering advanced realms doesn't mean leaving visualization behind;
it can be just as helpful in advanced areas as in introductory ones, and often moreso. In

fact, the degree to which visualization has helped me better understand the material in

the latter half of this book is a large part of my motivation for writing it. This chapter

is exciting because it starts to bring the power of visualization to bear on a few of the

theorems and proofs in group theory, a trend that continues throughout the rest of the book.

Analyzing groups more deeply means asking questions about what kind of organizing

structure they have, how they relate to one another, how to construct large ones by

combining smaller ones, and how to dissect larger ones to expose the smaller ones inside.

This chapter and those to come answer all these questions, beginning with looking inside

groups to find smaller groups (subgroups). This chapter will be the foundation on which

the following chapters of advanced study build. It will also deepen our understanding of

the makeup of both the groups we know and our familiar means of visualizing them.

I begin laying that foundation with Section 6.1, which brings together the two paradigms

this book has presented so far. We have seen how to view a group as a collection of ac-

tions and how to view it as an operation on a set. Cayley diagrams illustrate the former,

action-based point of view and multiplication tables illustrate the latter, algebraic one.

The following section looks at one of the most important things the algebraic point of

view can teach us about Cayley diagrams, a concept called regularity. The remaining
sections of this chapter use that concept to simplify their analysis of subgroups.

6.1 What multiplication tables say about Cayley

diagrams

Multiplication tables are part of the algebraic view of groups, which encourages and

enables us to use equations to describe relationships among elements of a group. As we

97
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98 6. Subgroups

know, such equations speak about Cayley diagrams by referring to their arrows. Consider

the Cayley diagram for S3, as shown on the left of Figure 5.17 on page 75. The equation

f rf D r�1 is true in S3 because the path f rf is the same as the path r
�1, in the sense

that following an f arrow, then an r arrow, then another f arrow accomplishes the same

thing as following an r arrow in reverse.

This holds true regardless of where in the Cayley diagram you begin. Starting at
the identity, f rf and r�1 both lead to the same endpoint, r2, but starting at any other

element they both still lead to the same endpoint, though the particular endpoint will be

different. We can illustrate the equation f rf D r�1 by lifting out just those two paths

from the Cayley diagram for S3, as shown in Figure 6.1.

Figure 6.1. A Cayley diagram fragment representing the equation f rf D r�1 . The top path,

followed left-to-right, is f rf , and the bottom path, followed left-to-right, is r�1. This diagram

indicates their equality by giving them common starting and ending points.

An algebraic equation is true not just about one portion of a Cayley diagram, but it is

true all across the diagram in the same way. The pattern in Figure 6.1 appears not just
in one part of a Cayley diagram for S3, but at every point in the whole diagram. This

is why I did not need to label the nodes in Figure 6.1; the pattern in that figure can fit

anywhere in a Cayley diagram for S3.

And that pattern is not the only one that permeates a Cayley diagram for S3. Any

other equation from S3 can also be represented by a pattern that appears throughout every

Cayley diagram for that group. Thus Cayley diagrams always have a uniform symmetry;

every part of the diagram is structured like every other. We cannot have f rf D r�1

true at some part of a Cayley diagram and yet false in another part of the same Cayley

diagram.

Definition 6.1 (regular). I call a diagram regular if it repeats every one of its internal
patterns throughout the whole diagram, in the sense discussed above.1 In particular, every

Cayley diagram is regular; diagrams lacking regularity do not represent groups, and so

we do not call them Cayley diagrams.

For instance, consider the arrows in the Cayley diagram in Figure 6.2 as representing

actions and the numbers 0 through 7 as situations through which those actions navigate.

Then in any of situations 4 through 7, if we call the red action r , then we can see that

the equation r2 D 0 is true. Yet in situations 0 through 3, things change; r 2 ¤ 0 in any

of those situations. The diagram is not regular, and thus it is not a Cayley diagram; it

does not describe a group.

Regularity shows us how groups embody symmetry. We have used groups to measure

symmetry, and said that Cayley diagrams faithfully represent groups; regularity is one of

1 I use the term regular because the property I'm speaking of comes from [16], which classifies Cayley

diagrams as those graphs whose automorphism groups have a subgroup that acts regularly on the diagram's
nodes, a more technical way to describe this same property.
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6.2. Seeing subgroups 99

the consequences of that faithful representation. Every part of a group looks like every

other part. Groups themselves are full of symmetry.

6.1.1 Perfecting our unofficial definition

In Exercise 4.16, I asked you to inspect two Cayley diagrams, one of which is repeated in

Figure 6.2. Exercises 2.14 through 2.17 asked you to come up with criteria for determining

if a diagram represents a group as defined in Definition 1.9. The diagram in Figure 6.2

satisfies all of them! Therefore, from the viewpoint of the unofficial Definition 1.9, such

a diagram would seem to describe a group. This is why I called that definition unofficial;

for the sake of keeping Chapter 1 simple, I left out a technical point.

0

4

1

5

2

6

3

7

Figure 6.2. A diagram that satisfies many of the criteria for being a Cayley diagram, but violates
one: equations about relationships among the generators change from one part of the diagram to

another.

That technical point is what was stated above: a diagram is not a Cayley diagram

(i.e., it does not describe a group) unless it is regular. I omitted any reference to regularity

of diagrams in Chapter 1 because it requires speaking of equations, which it was too

early to bring up. The informal argument in Section 4.4, that any group by Definition

1.9 is a group by Definition 4.2, glossed over this detail by nature of its informality. A

rigorous argument would require making our informal definition mathematically precise;

this could be done by incorporating regularity.

But there is no need to do so; we have gained what we need from the introduction

of regularity, a better understanding of Cayley diagrams, in preparation for the coming

sections. I will be using Cayley diagrams as our primary visualization tool for the rest

of this book (occasionally also referring to multiplication tables when they are helpful).

The following sections use this new idea of regularity to prove some essential theorems

about subgroups.

6.2 Seeing subgroups

As we became acquainted with a wide variety of groups in Chapter 5, we talked a bit about

their internal structure. Most importantly, we saw that every group has one or more cyclic

groups inside it, called orbits. It's now time to take this idea beyond just cyclic groups.

Definition 6.2 (subgroup). When one group is completely contained in another, the inner

group is called a subgroup of the outer one. When a group H is a subgroup of a group

G, the standard way to write this is H < G.
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f

rfr2f

e

r2 r

rf

r

e

f

r2f

r2

110
111

100
101

010

011

000

001

A copy of C3

in the group S3

A copy of C2

in the group S3

A copy of V4 in the

group C2 � C2 � C2

Figure 6.3. Three Cayley diagrams highlighting easy-to-spot subgroups.

All the orbits we saw in Chapter 5 are subgroups. For instance, the orbit of r in S3,

fe; r; r2g, is a cyclic subgroup of order 3, a copy of C3. We can write fe; r; r2g < S3, or

if we're less concerned with formality, even C3 < S3. This is the first example shown in

Figure 6.3. The second example in that figure, fe; f g < S3, is also an orbit, but the third

example is not, because the highlighted subgroup is not just a single cycle. The generator

notation from Exercise 4.25 (page 59) gives us a handy way to describe these subgroups.

For example fe; r; r2g is generated by r , and thus can be more succinctly written hri.
The other two examples in Figure 6.3 are therefore hf i and h001; 010i.
Every single group has some kind of subgroup, for the following two reasons. The

identity by itself, feg, is a copy of C1 in any group, called the trivial subgroup.And techni-
cally every group is a subgroup of itself (e.g., S3 < S3), called the non-proper subgroup.
The example subgroups in Figure 6.3 are easy to spot. We are familiar with these

small groups from earlier chapters and can recognize their Cayley diagrams on sight,

probably even if Figure 6.3 hadn't highlighted them for us. But not every subgroup in

every Cayley diagram is visually obvious. Figure 6.4 shows two less obvious examples,

yet they are by no means as visually obscure as subgroups can be. To visualize subgroups,

we therefore need a method for bringing them out of hiding.

(2 0),

(2 1),(1 0),

(2 1),

(1 2),

(2 2),

(0 0), (0 1), (0 2),

3

5 1

0

24

Figure 6.4. Two Cayley diagrams highlighting less obvious subgroups. The left diagram shows
a copy of C3 in C3 � C3; the pattern is easy to spot, but it is not the familiar circular pattern of

C3 . The right shows a copy of C3 in C6; each step in the copy of C3 is two steps in the C6 cycle.
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6.3 Revealing subgroups
Any subgroup can be revealed by a suitable reorganization of the group's Cayley diagram.

For example, recall Figure 5.29 on page 83, which shows two Cayley diagrams for A5.

One of these diagrams is organized to emphasize a cyclic subgroup of order five, and the

other to emphasize a cyclic subgroup of order three. The five- and three-cycles are visible

in the respective diagrams. This section explains how to reorganize Cayley diagrams to

emphasize specific subgroups; I explain a similar strategy for multiplication tables in

Exercise 6.26.

The language of generators makes it easier to discuss how Cayley diagrams and multi-

plication tables are organized. Consider the example C6 D f0; 1; 2; 3; 4; 5g. This group can
be generated several ways, including C6 D h1i and C6 D h5i. Perhaps unexpectedly, we
can also write C6 D h2; 3i. If indeed the fact C6 D h2; 3i surprises you, I recommend tak-
ing a moment to verify that you can create every element of C6 using just 2, 3, and addition

mod 6. Neither 2 nor 3 alone generates C6, but together they do. These different ways to

generate C6 give rise to correspondingly different ways to connect a Cayley diagram of C6

with arrows, an idea you may remember from Exercise 2.9. Each is shown in Figure 6.5.

The left two diagrams in Figure 6.5 clearly represent a six-element cyclic group, but

the right two diagrams disguise the cycle. The left two diagrams emphasize the non-proper

subgroup h1i D C6, while each of the right two emphasizes both of the subgroups h2i
and h3i. Take a moment to spot the subgroups h2i and h3i in each of the right two Cayley
diagrams in Figure 6.5.

The moral of the story is that we can make any subgroup visually prominent in a

Cayley diagram by choosing generators for the group that include the generators of that
subgroup. Sometimes it is also necessary to then choose a new layout for the nodes that
untangles the resulting connections. This is how I brought out the subgroups h2i and h3i: I
generated C6 as h2; 3i, resulting in the third diagram in Figure 6.5. I then reorganized that
diagram to look cleaner, resulting in the rightmost diagram in the same figure. Because

there is sometimes more than one clear, useful layout, there is not necessarily one \perfect"

or \correct" one; it may be a matter of preference.

Judicious choices of arrows and new layouts enable us to reveal hidden subgroups

like h2i < C6. You can experiment easily with different ways to generate and organize

Cayley diagrams using Group Explorer; refer to its documentation for details.

C6 D h1i C6 D h5i C6 D h2; 3i C6 D h2; 3i,
reorganized

0

2

3

4

5 1

0

2

3

4

5 1

0

2

3

4

5 1

0

2

3

4

51

Figure 6.5. Four ways to connect a Cayley diagram of C6 , based on different choices of

generators. Note how similar the rightmost diagram is to the familiar Cayley diagram of S3. Can

you spot the difference?
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102 6. Subgroups

6.4 Cosets

The first step towards a deeper study of subgroups is to notice that identical copies of each

subgroup appear throughout the rest of the group's Cayley diagram. For instance, consider

the copy of C3 in S3, shown on the left of Figure 6.3. That same cyclic, three-element

structure is repeated as the inner ring of the Cayley diagram (although it is reversed).

Similarly, the copy of C2 in S3 shown in the middle of Figure 6.3 is repeated twice more

throughout the diagram, as Figure 6.6 shows.

r2

rfr f2

r

e

f

r2

rfr f2

r

e

f

r2

rfr f2

r

e

f

Figure 6.6. Copies of the subgroup hf i in S3

But not all those copies are subgroups. A subgroup, because it is a group, must have

an identity element. In Figure 6.6 only the leftmost copy fe; f g contains e. Furthermore,
multiplying two elements in fr; rf g, for example, does not yield another element in that
set. For this reason also, it is not a group. So the sets fr; rf g and fr2; r2f g have a
different name; they are called cosets, to indicate that they are copies of a subgroup
structurally, but are not themselves groups.

Learning about subgroups and their cosets will reveal important structural properties

about groups in general. Let's begin by making a few observations about cosets. I call

them \observations" rather than theorems because they are simple enough that I can

justify them with informal comments. A concept that shows up several times below is

the regularity in every Cayley diagram, a concept introduced in Section 6.1. The first

observation points out that cosets aren't specific to the example in Figure 6.6.

Observation 6.3. Every subgroup has cosets, and they cover every node of the group's
Cayley diagram.

Let's see why this observation is true. In Figure 6.3, what allowed us to write fe; f g as
hf i and f000; 001; 010; 011g as h001; 010i was that every group has a set of generators,
even if that group is a subgroup of another. We can visualize how a subgroup is generated

by exploring from the identity node in a Cayley diagram using just the generators for that

subgroup.

But such exploration could be done from any node. We could explore using the gen-

erators for a subgroup H , but starting at any other element g in the larger group G. The

regularity of the diagram means that such exploration will reveal the same pattern no

matter where it begins. Thus such an exploration will trace out a structural copy of H

beginning at g. So a Cayley diagram for G is full of copies of H touching every element

of G.

Observation 6.4. We can also describe cosets algebraically. The copy of H based at a

is named aH .
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6.4. Cosets 103

The choice of the name aH is not arbitrary. Recall that to multiply ab in a Cayley

diagram, start from the node a and follow the path for b. The meaning of aH in a Cayley

diagram is similar: Start from the node a and follow all the paths inH . This describes the
copy of H based at a, so the naming convention makes sense. Following that convention,

the middle coset in Figure 6.6 is called rhf i and the right one is r2hf i.
I have described how to compute a coset aH visually, but we can compute it alge-

braically as well. To do so, multiply the element a by the list of elements of H , with a

the left element in each multiplication, as suggested by the name aH . An example of this

computation for the coset rhf i is shown here.

rhf i D rfe; f g D fr � e; r � f g D fr; rf g

For this reason all the cosets we have seen are actually called left cosets, because the
multiplication is done on the left. I introduce the complementary notion of right cosets

after two final observations.

Observation 6.5. Each coset can have more than one name.

For example, rhf i is the name given to the middle coset in Figure 6.6, because it is
the copy of hf i based at r . However, it is just as true to say that it is the copy of hf i
based at rf . As another example, consider the subgroup highlighted in C2 � C2 � C2 in

Figure 6.3 (call it H ). The coset behind H could be described as 100H , 101H , 110H ,

or 111H , because exploration using the generators of H from any one of those elements

reaches the same coset. The regularity in the subgroup's Cayley diagram is what makes
this so.

Whenever a left coset aH contains an element b, we could just as easily have called

the coset by the name bH . Since aH means the copy of H containing a and bH means

the copy of H containing b, they refer to the same copy of H . Let's make this our final

observation.

Observation 6.6. If b is in aH , then aH D bH .2

Thus in Figure 6.6, we can also call rhf i by the name rf hf i, and r2hf i by the name
r2f hf i. The element you choose to use to name the coset is called the representative.
Let us put left cosets aside for a moment and find out about their counterparts, right

cosets, which I have mentioned but not yet showed. From an algebraic point of view, you

can probably guess how I will describe right cosets; a right coset Ha is computed just

like a left coset, but the multiplication is done on the right. The right cosets of hf i in S3

are therefore

hf ir D fe; f gr D fe � r; f � rg D fr; r2f g and

hf ir2 D fe; f gr2 D fe � r2; f � r2g D fr2; rf g:

Neither of these right cosets matches either of the left cosets of hf i we saw. Therefore
they must look different in the Cayley diagram. Let's see how they look.

To compute a right coset visually, reverse the process for left cosets: Start with the

subgroup hf i and follow the path for r from each element of that subgroup. The resulting
set of destinations is the right coset hf ir . Notice how this agrees with the algebraic

computation; it multiplies each element of the subgroup on the right by r .

2 A more formal argument justifying Observation6.6 can be obtained by doing Exercise 6.15.
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r2

rfr f2

r

e

f r

r2

rfr f2

r

e

f r

Figure 6.7. The left diagram shows the left coset rhf i in S3, the nodes that f arrows can

reach after the path to r has been followed. The right diagram shows the right coset hf ir in S3,
the nodes that r arrows can reach from the elements in hf i.

Figure 6.7 compares the computations of rhf i and hf ir in a Cayley diagram. Figure
6.8 moves beyond that specific example, showing the distinction between left and right

cosets in a Cayley diagram more generally. The reason that left cosets look like copies of

the subgroup while the elements of right cosets are usually more scattered is that I adopted

the convention that arrows represent right multiplication. If I had used the convention

where arrows represent left multiplication, right cosets would have been copies of the

subgroup and left cosets would have been scattered.

gH He g

e

eg

h g3

Hg

h g2

h g1h1

h2

h3

Figure 6.8. Each left coset gH is where H arrows can reach from g, which looks like a copy

of H based at g, as in the left illustration. Each right coset Hg is the set of nodes to which the g

arrows take the elements of H , as in the right illustration.

The subgroup hf i < S3 was a good first example because it showed us that left and

right cosets are generally different. But because they are not always different, it is worth

also seeing an example of when left and right cosets come out equal. Figure6.9 illustrates

(0 1),

(2 0), (2 1), (2 2),

(0 0),

(1,1) (1 2),(1,0)

(0 2), (0 1),

(2 0), (2 1), (2 2),

(0 0),

(1,1) (1 2),(1,0)

(0 2),

Figure 6.9. A left and right coset pair that are equal. Here H D h.0; 1/i in the group C3 � C3

and g D .1; 0/; on the left we see the computation of gH and on the right Hg. The result is

f.1; 0/; .1; 1/; .1; 2/g in both cases.
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e f r rf r2 r2f
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f e r2f r2 rf r
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r rf r2 r2f e f
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rf r f e r2f r2

rf

rf

r2 r2f e f r rf

r2

r2

r2f r2 rf r f e

r2f

r2f

left coset gH

e f r rf r2 r2f

e

e

f e r2f r2 rf r

f

f

r rf r2 r2f e f

r

r

rf r f e r2f r2

rf

rf

r2 r2f e f r rf

r2

r2

r2f r2 rf r f e

r2f

r2f

right coset Hg

Figure 6.10. The visual computation of left and right cosets in multiplication tables. The

computations of gH and Hg are exemplified for H D fe; f g and g D r2 in the group S3.

such a situation using the subgroup H D h.0; 1/i < C3 � C3. Although it only depicts

the equality gH D Hg for g D .1; 0/, we would find gH D Hg to be true no matter

which value of g we choose. Subgroups for which this is true are given the special name

normal, and we will learn their importance in Chapter 7.
Computing left and right cosets using multiplication tables is also straightforward; I

show how in Figure 6.10. I have ordered the row and column headings in the multiplication

tables in that figure according to the subgroup hf i and its left cosets. The left coset r2hf i
must appear in the r2 row under the e and f columns, because those cells hold the results

of r2 � e and r2 � f . In any multiplication table, you can compute left cosets this way;
the elements of gH are in the g row under the H columns. On the other hand, the right

coset Hg can be computed in a similar way, but with the words \rows" and \columns"

interchanged: Hg appears under the g column in the H rows.

6.5 Lagrange’s theorem

Allow me to draw your attention to a pattern in all the examples of subgroups and their

cosets that we've seen so far. Observation 6.3 stated that the left cosets of a subgroup

cover the whole group. And in all the examples we've seen so far, not only is this true,

but every element in the group has actually been in exactly one left coset. Figure 6.6
shows us not only that the left cosets of hf i cover all of S3, but also that no element is

in more than one of them; no two cosets overlap. This was also true of the right cosets

of hf i we computed in the previous section, although we did not illustrate them.
Because the cosets of hf i do not overlap, I can consolidate all of Figure6.6 into one

Cayley diagram, with a color for each coset, as on the left of Figure 6.11. The right of

Figure 6.11 shows a similar diagram, but for right cosets. The coloring schemes in these

diagrams are possible because no element belongs to more than one coset, and thus no

element requires more than one color.

When a collection is separated into categories, each item ending up in exactly one

category, mathematicians call this a partition. Figure 6.11 shows that the left cosets of
hf i partition S3 and the right cosets of hf i do also, but differently. A careful look at
Figure 6.9 reveals that the cosets of h.0; 1/i also partition C3 � C3.



\master" | 2011/10/18 | 17:10 | page 106 | #120
i

i

i

i

i

i

i

i

106 6. Subgroups

e

f

rf

rr2

r2f

e

f

rf

rr2

r2f

Figure 6.11. The left Cayley diagram for S3 shows how the group is partitioned by the left

cosets of the subgroup fe; f g; the right diagram shows how S3 is partitioned by the right cosets

of fe; f g.

The natural question is therefore whether this pattern we've noticed is a coincidence.

Do the cosets of a subgroup always partition the group? The answer is given by the

following theorem. I keep things simpler by dealing only with left cosets; Exercise 6.16

asks you to think through the same question for right cosets.

Theorem 6.7. If H is a subgroup of G, then each element of G belongs to exactly one
left coset of H .

Proof. Suppose the element g of G appears to belong to two different left cosets, say

aH and bH . In such a case, aH and bH must actually be two different names for the

same coset (in the sense of Observation 6.5); here's why.

Since g is in aH , we can conclude that gH D aH , based on Observation 6.6. And

since g is also in bH , we know gH D bH for the same reason. The reason, then, that

aH D bH is that both are equal to gH .

Theorem 6.7 teaches us to think of a group as being composed exclusively of non-

overlapping copies of any subgroup (that subgroup's left cosets). We saw a specific

example of this in Figure 6.11, and you can easily picture a similar division of C3 � C3

suggested by Figure 6.9. The shapes of these two example partitions are different, but

the abstract idea is the same in both cases. That idea, that cosets partition a group, is

depicted a few ways in Figure 6.12.

Picturing groups this way reveals an important relationship between a group and each

of its subgroups, expressed in the following important theorem, named after the Italian-

H

g Hn

H

H

g Hn

…

…

…

…

g Hn
g Hn–1

g H1 g H1

g H1

g H2

Figure 6.12. Several ways to picture the idea that cosets partition a group. The appearance

of cosets in a diagram differs based on the layout of the diagram, so each of these illustrations

represents the same idea, but for a different type of Cayley diagram layout.
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born mathematician Joseph Louis Lagrange. In stating the theorem, I use the standard

notation jGj to mean the size (order) of the group G. Although there is a version of this
theorem for infinite groups, in this section we assume G is finite.

Theorem 6.8 (Lagrange's Theorem). If H < G, then the order jH j of the subgroup
divides the order jGj of the larger group.

Here I'm using the word divides in its common mathematical sense, as shorthand for
\divides evenly into." In other words, we say that a smaller whole number divides a larger

when the smaller number is one of the factors of the larger. Six divides twelve, but not

twenty, because 20� 6 leaves a remainder; the division does not come out \even."

Proof. Theorem 6.7 proved that the group G is partitioned into copies of H . So the size

of G can be determined just by counting how many copies of H there are and multiplying

that number by the size of each one, the number jH j. So if n is the number of left cosets
(including H itself), we can write the equation

jGj D
repeated n times

‚ …„ ƒ

jH j C jH j C � � � C jH j D n jH j :

The number n in the above proof comes up so frequently in the study of groups and

their subgroups that it has a name.

Definition 6.9 (index). If H < G then the index of H in G, written ŒG W H�, is how
many times jH j goes into jGj.

ŒG W H� D jGj
jH j

The index is the number of left cosets of H , if we count H itself as a coset. Most of the

time when the word coset is used, it is understood that the subgroup itself is both a left

and a right coset of itself, because H D eH D He.

You will notice that the index ŒG W H� must also divide jGj, because the above
equation could also be written as

jH j D jGj
ŒG W H� :

Let's make these ideas concrete by returning to the example of hf i < S3. The order

of S3 is 6, which we can see is the sum of the sizes of the three cosets of order 2. The

index of hf i in S3 is therefore 3, because it has three cosets.

ŒS3 W hf i� D jS3j
jhf ij D 6

2
D 3

Since Lagrange's Theorem has a famous mathematician's name attached to it, you

may suspect that it has some interesting implications. Your suspicion would be correct!

One important use of the theorem is that it significantly narrows down the possibilities

for subgroups. For instance, in a group of order 8, you know not to bother looking for

subgroups of order 3, 5, 6, or 7, because none of those numbers divides 8. More generally,
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108 6. Subgroups

in any group G, you know not to look for subgroupsH with jH j > jGj
2
, because numbers

larger than half of jGj cannot divide jGj. (The only exception here is the one non-proper
subgroup H D G.) When you try the exercises in this chapter, keep these shortcuts in

mind.

A natural and fruitful question is whether Lagrange's Theorem can be \turned around."

The theorem states that if there is a subgroup H , then its order divides jGj. \Turning this
around" means asking if for every n that divides jGj, we can find a subgroup H < G of

order n. The short answer is no, and Exercise 6.31 will guide you in demonstrating why.

But some modified versions of this turned-around Lagrange's Theorem are both true and

useful. Among them are the Sylow Theorems, which we will study in Chapter 9.

Be sure to try the exercises in Section 6.6.3 on Hasse diagrams, because Chapter 10

depends on an understanding of such diagrams. They help us understand the relationships

among subgroups in general.

6.6 Exercises

6.6.1 Basics

Exercise 6.1. Which of these three diagrams is a Cayley diagram? Which satisfies all

the requirements for being a Cayley diagram except for regularity?

Exercise 6.2. Each of the diagrams below highlights some nodes. In each case, determine

whether the highlighted set of nodes form a subgroup. You may need to reorganize some

of the diagrams or add more arrows to make the answer obvious.

R

N

R 2

3

0

1 13

0

2RB

B BN

RB

{ } inN, B V4 { } inR, RB V4 {0, 1} in C4 {0, 2} in C4



\master" | 2011/10/18 | 17:10 | page 109 | #123
i

i

i

i

i

i

i

i

6.6. Exercises 109

2

0

110

100

011

001

111

010

101

000

{ f, rf, Din 4r f, r f2 3 }

e

r

f

rfr3fr3

r2f

r2

r

f

rfr3fr3

r2f

r2

e

{e, rf, Din 4r , r f2 3 }

1

{0 in C3} {000, 010, 101, 111

in C

}

2 ´C C2 2´

6.6.2 Understanding subgroups

Exercise 6.3. Make Cayley diagrams for the following groups with every non-identity
element represented by an arrow.

(a) C3

(b) V4

(c) C5

(d) S3

Exercise 6.4. Which of the following subgroups does Lagrange's Theorem preclude

from appearing as a subgroup of C8? Which of them does Lagrange's Theorem preclude

from appearing as a subgroup of D5?

(a) C2

(b) C3

(c) V4

(d) C5

(e) S3

Exercise 6.5. Find every subgroup for each of the following groups. Compute the order

and index of each subgroup you find.

(a) V4 Hint: There are five.

(b) C5

(c) S3 Hint: There are six.

(d) C8

(e) D4

(f) C3 � C3

Exercise 6.6.

(a) What elements are in the left coset rmhf i in Dn?

(b) What elements are in the right coset hf irm in Dn?

(c) How do these cosets look in a typical Cayley diagram for Dn?
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110 6. Subgroups

Exercise 6.7.

(a) If e is the identity element, then what is hei?
(b) If a is in the subgroup hb; ci, then what is ha; b; ci?
(c) If a is not in the subgroup hb; ci, and that subgroup's index is 2, then what is ha; b; ci?
(d) If a is not in the subgroup hb; ci, and that subgroup's order is 28, then what do you

know about the order of ha; b; ci?

Exercise 6.8. Consider a cyclic group Cn. If m is a number that divides n, then describe

all the subgroups Cn has of order m.

Exercise 6.9. If a is the permutation that interchanges the numbers 1 and 2, but leaves

all other numbers alone, then what is ŒSn W hai�?

Exercise 6.10. Which of the following statements are true? Explain each of your answers.

(a) A group with 18 elements cannot have a subgroup of order 9.

(b) A group with 22 elements cannot have a subgroup of order 12.

(c) A group with 12 elements cannot have a subgroup of order 22.

(d) A group with 10 elements must have a subgroup of order 10.

(e) A group with 12 elements must have a subgroup of order 6. (See Exercise 6.31.)

Exercise 6.11. A particular special case of Lagrange's Theorem bears highlighting on

its own. As we learned in Chapter 5, any element g in a group can be used to create a

cyclic subgroup called the orbit of g. We write jgj as shorthand for the size of that orbit
(i.e., jgj D jhgij), and call it the order of g.
Explain why the order jgj of any element must divide the order jGj of the group.

Exercise 6.12. Answer each of the following questions and explain why your answers

are correct.

(a) How many subgroups does G have when jGj is prime?
(b) What is the orbit of an element in such a group G?

(c) How many groups of order p are there, when p is prime?

Exercise 6.13.

(a) What subgroup of A4 is generated by the following two permutations?

1 2 3 4 1 2 3 4

(b) What subgroup of S4 is generated by the following two permutations?

1 2 3 4 1 2 3 4

Exercise 6.14. Is the \turned-around" version of Lagrange's Theorem mentioned at the

end of this chapter at least true about cyclic groups?
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Exercise 6.15. Leading up to Observation 6.6, I gave an informal explanation of why

that observation is true. Let's make that explanation more formal. Recall that Observation

6.6 says that if b is in aH , then aH D bH . So assume in the group G that the element

b is in the left coset aH , and answer the following questions.

(a) What do we know about how a and b connect in a Cayley diagram of G?

(b) Explain why every node that can be reached from b using the generators of H can

also be reached from a using those same generators.

(c) Explain why every node that can be reached from a using the generators of H can

also be reached from b using those same generators.

(d) Explain why correct answers to parts (b) and (c) prove that whenever b is in aH ,

then aH D bH .

Exercise 6.16. Correct answers to this exercise show that all the work in this chapter

that was specific to left cosets could also be done for right cosets.

(a) The justification following Observation 6.3 spoke from the point of view of left

cosets. Explain why Observation 6.3 is also true about right cosets. That is, why is

every element of the group in some right coset?

(b) Explain what changes would need to be made to my questions and your answers in

Exercise 6.15 to make them justify a version of Observation 6.6 about right cosets.

(c) If Theorem 6.7 had been about right cosets, what changes would you need to make

to its proof? Feel free to make reference to your answers to parts (a) and (b).

(d) Why is the number of elements in Hg equal to jH j?

(e) If Theorem 6.8 had been about right cosets, what changes would you need to make

to its proof? Again, you may make use of earlier answers.

Exercise 6.17. Consider the group Z from Exercise 5.30.

(a) If n is in Z, then is hni a subgroup of Z? What does it contain?

(b) For which n 2 Z is hni D Z?

(c) If n and m are both in Z, then when is hni < hmi?

(d) Can hni itself also have subgroups?

(e) What subgroup of Z is generated by 2 and 5?

(f) What subgroup of Z is generated by 4 and 6?

Exercise 6.18.

(a) What is the one coset of h2i in Z?

(b) How many cosets does h3i have in Z, and what are they?

(c) Is hni a normal subgroup of Z?
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112 6. Subgroups

Exercise 6.19. Recall the group Q of rational numbers under the operation of addition,

from Exercise 4.33 part (a).

(a) Compare its subgroup h2i to the subgroup h2i of Z. Note any similarities or differ-

ences.

(b) Compare its subgroup h2; 3i to the subgroup h2; 3i of Z. Note any similarities or

differences.

Exercise 6.20. For each H and G given below, find all left cosets of H in G, then state

the index ŒG W H�.
(a) H D h4i, G D C20

(b) H D h6i, G D C15

(c) H D hf i, G D D4

(d) H D A4, G D S4

Exercise 6.21. List all the subgroup relationships that exist among the following eight

groups.

C2 C3 C4 C6 Z Q

QC, as in Exercise 4.33 the even integers, h2i in Z

6.6.3 Hasse diagrams

Exercise 6.22. The collection of all subgroups of a group can be arranged in a Hasse
diagram, which follows the following three rules.

1. At the top of the Hasse diagram we place the whole group, and at the bottom the

trivial subgroup feg.
2. Subgroups are arranged between, with larger ones higher up.

3. Vertical or diagonal lines connect smaller subgroups to those larger subgroups that

contain the smaller ones.

Here are two examples, the Hasse diagram for all subgroups of C5 on the left, and for

S3 on the right.

C5

{ }e
{ }e

S r, f3 = á ñ

á ñrfá ñf á ñr f2

á ñr

(a) Why are there no lines among any of the subgroups hf i, hrf i, hr2f i, and hri in S3?

(b) What is the smallest subgroup of S3 containing both f and rf ?

(c) What is the smallest subgroup of C5 with more than one element in it?

(d) Label each line in each of the above two Hasse diagrams with the index of the smaller

subgroup in the larger. For example, you would label the lower-leftmost line in the

S3 diagram with 2, because Œhf i W feg� D 2.
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Exercise 6.23. Make a Hasse diagram for each of the groups whose list of subgroups

you found in Exercise 6.5.

Exercise 6.24. Make a Hasse diagram for the group C24. Recall Exercise 6.8, whose

answer will speed your search for subgroups.

6.6.4 Organizing visualizations

Exercise 6.25. In each of the following cases, draw a Cayley diagram for the given

group that emphasizes the given subgroup. Choose a layout for the nodes that clusters

together each left coset of the given subgroup.

(a) the subgroup h2i in C4

(b) the subgroup h3i in C9

(c) the subgroup h011; 110i of C2 � C2 � C2, as diagrammed in Figure 6.3

(d) the subgroup hr2; f i of D4 D hr; f i
Hint: Use arrows for r , r2, and f .

(e) the subgroup A4 of S4

Hint: Take a Cayley diagram for S4 from Chapter 5, label an element as the identity,

and then square each element in the diagram visually (treating it as a path from the

identity node). This quick, visual way to compute A4 results in a diagram that must

simply be reorganized to cluster A4 apart from its one coset.

Exercise 6.26. Layouts for multiplication tables are determined by the ordering of the

elements along the row and column headings. For most purposes, the order across the

column headings should match the order down the row headings, and so just one order

should be chosen.

It is usually helpful to order the elements in an organized way. If the group is cyclic,

the natural order is the sequence of the cycle. Otherwise, choose a subgroup to list first,

and then list its cosets in order thereafter, as was done in Figure 6.10.

Doing so emphasizes the subgroup by placing that subgroup's multiplication table in

the upper left corner of the larger multiplication table. You can see this in Figure 6.10

and in the following table, organized by the subgroup hri in S3.

e r r2 f rf

e

e

r r2 e rf

r

r

r2 e r rf

r2

r2

f rf e r r2

f

f

rf r2 e r

r f2

rf r r2 e

rf

rf

f

f

f

f

r f2

r f2

r f2

r f2

r f2r f2

r f2

Notice that the elements of the subgroup, too, are ordered using the same principles|

because it is cyclic, they are in the order of the cycle; if the subgroup had not been cyclic,

I would have chosen one of its subgroups to help me organize it, and so on.
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114 6. Subgroups

(a) Organize a multiplication table of V4 by an order-2 subgroup.

(b) Organize a multiplication table of C8 by the subgroup h2i.

(c) Organize a multiplication table of C8 by the subgroup h4i.

(d) Organize a multiplication table of C9 by the subgroup h3i.

Exercise 6.27. The previous exercises had you organize Cayley diagrams and multipli-

cation tables in different ways. Are there also different ways to organize cycle graphs? If

so, what significance do they have? Can they be used to emphasize specific subgroups?

Why or why not?

6.6.5 Finding examples

When doing the exercises in this section, rely upon the library of groups you learned in

Chapter 5.

Exercise 6.28. For each of the following questions, either find a group that answers the

question in the affirmative or give a clear explanation of why the answer to the question

is negative.

(a) Is there a non-cyclic group all of whose proper subgroups are cyclic?

(b) Is there a non-abelian group all of whose proper subgroups are abelian?

Exercise 6.29. For each of the following questions, either find a group that answers the

question in the affirmative or give a clear explanation of why the answer to the question

is negative.

(a) Is there a group of order 8 with a subgroup whose cosets partition the group into two

different cosets (each coset therefore containing four elements)?

(b) Is there a group of order 8 with a subgroup whose cosets partition the group into

eight different cosets (each element in its own coset)?

(c) Is there a group of order 8 with a subgroup whose cosets partition the group into just

one big cluster (every element in one coset)?

(d) Is there a group of order 30 with a subgroup whose cosets partition the group into

20 different cosets?

(e) Is there an abelian group with a subgroup whose left and right cosets partition the

group differently?

Exercise 6.30. For each integer n between 1 and 5, find a non-abelian group G with a

subgroup H such that jH j � 3 and ŒG W H� D n.

Exercise 6.31. This exercise investigates subgroups of A4. By Lagrange's Theorem, the

only sizes possible for subgroups of A4 are 1, 2, 3, 4, 6, and 12.

You can either do the work of this exercise using permutations, or using the following

multiplication table for A4. In it, the elements are colored according to their order: a, b,

c, and d are of order 3, while the elements x, y, and z are of order 2. This coloring

should prove helpful in answering the questions below.
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e x y z a b c d

e

e

x e z y b a d c

x

x

y z e x d c b a

y

y

z y x e c d a b

z

z

a c b d e y

a

a

b d a c x e y z

b

b

c a d b z y e x

c

c

d b c a y z x e

d

d

e y x z a c d b

a2

y e z x d b a c

b2

x z e y b d c a

c2

z x y e c a b d

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2d2

c2

c2

c2

c2

c2

c2

c2

c2

c2

c2

c2c2

b2

b2

b2

b2

b2

b2

b2

b2

b2

b2

b2b2

d2

d2

c2

a2

a2

a2

a2d2

b2

a2

a2

a2

a2

a2

a2

a2

a2a2

zx

(a) Describe all subgroups of order 1.

(b) Describe all subgroups of order 12.

(c) A subgroup of order 2 must be structurally the same as what group?

Express each order-2 subgroup of A4 using generator notation.

(d) A subgroup of order 3 must be structurally the same as what group?

Express each order-3 subgroup of A4 using generator notation.

(e) In part (a) of Exercise 5.37 we saw that there are only two groups of order 6, C6 and

S3. Each of them has an element of order 2 and one of order 3. Thus we can look

for subgroups of order 6 by pairing up order-2 elements with order-3 elements.

Express each order-6 subgroup of A4 using generator notation.

(f) What is the significance of your result from part (e)?
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7
Products and quotients

Chapter 6 looked inside groups to find subgroups, and so taught us something about

the groups' internal structure. This chapter moves in the opposite direction, showing

how groups can be assembled together to construct larger groups. We will learn two

such construction processes, each a different kind of group product operation. Here I'm

using the word \product" in its mathematical sense, meaning a kind of multiplication.

We will also learn how certain subgroups can be the key to reversing such a process,

facilitating a quotient operation that deconstructs any kind of product, revealing how

a larger group may be constructed from smaller groups. This will enable us to picture

clearly and simply the structure of many large groups, bringing otherwise large, complex

objects within intellectual reach.

This chapter therefore teaches three processes: how to perform each of two product

operations and how to perform a quotient operation. Each process is illustrated by several

examples, and the exercises at the end of the chapter ask you to practice each of these

processes. It is essential to \get your hands dirty" with such practice, because doing so

strengthens your intuition for both the processes themselves and the groups that they

construct and deconstruct.

I have organized this chapter's exercises to help you build your intuition one topic at

a time. Each section in the chapter corresponds to a section in the exercises. So when you

finish reading Section 7.1, if you feel you need to practice those concepts to strengthen

your understanding before reading further, you can jump straight to the exercises in Section

7.6.1, which cover only the material from Section 7.1. Each section in the chapter follows

this pattern, so that the material can be digested in bite-sized pieces.

We begin with the simpler of the two product operations we will study, the direct

product.

7.1 The direct product

You have seen some direct product groups already in this book. Every group whose name

contains the multiplication symbol � can be constructed using a process called the direct

117
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118 7. Products and quotients

C3 � C3 C2 � C4 C2 � C2 � C2

Figure 7.1. Three example direct product groups

product. The first such groups we saw were C3 � C3 and C2 � C2 � C2 in Figure 2.10,

but we have seen others since then, such as C2 � C4 in Figure 5.9. For convenience, I

repeat the Cayley diagrams for these three groups in Figure 7.1. The � symbol is often

pronounced \cross" or \times," so you might read C2 � C4 as \cee two cross cee four."

It is not a requirement that direct products only involve various Cn, but small examples

usually do. In a few pages we will come to the larger example S3 � C2.

Section 7.1.1 explains how to construct direct product groups and demonstrates the

process on several examples. After that introduction to direct product groups, we will be

prepared to learn how they will benefit our study of group theory in general (Section 7.1.3).

Before we learn the details of the direct product operation, let's pick up a few funda-

mentals by inspecting the examples in Figure 7.1. Those diagrams show us two reasons

why the operation we are about to learn is a product, and uses the � notation. First, the
diagram of C3 �C3 is obviously a three-by-three (3� 3) grid, making the name C3 �C3

sensible. Second, C3 � C3 is therefore obviously a group with nine elements, since after

all, 3� 3 D 9. These same two basic ideas also hold for C2 �C4 (a two-by-four grid of

eight elements) and C2 � C2 � C2 (a two-by-two-by-two grid of eight elements), as we

can see from the figure.

7.1.1 Constructing a direct product visually

I introduce the direct product construction as a visual procedure. From Cayley diagrams

for groups A and B , we will create a Cayley diagram for the group A�B as described in
Definition 7.1. Each step in the process is exemplified in Figure 7.2, using the groups C2

and C4 for A and B , respectively. The example therefore constructs the middle diagram

from Figure 7.1. I later extend this method to cover multiplication tables, and from there

we can gain an algebraic understanding of it.

Definition 7.1 (technique for constructing direct products using Cayley diagrams). To

create a Cayley diagram of A�B from Cayley diagrams of A and B , proceed as follows.

1. Begin with the Cayley diagram for A.

In the example in Figure 7.2, the group A D C2 appears on the left.

2. Inflate each node in the Cayley diagram of A and place in it a copy of the Cayley

diagram for B .

In the middle of Figure 7.2, each of the two nodes of C2 grew taller to contain a copy

of a Cayley diagram for C4.
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7.1. The direct product 119

cyclic group C2 each node contains

a copy of C4

direct product

group C C2 4´

Figure 7.2. The construction of a Cayley diagram for the group C2 �C4, using Cayley diagrams

of C2 and C4 , as described in Definition 7.1

3. Remove the (inflated) nodes of A while using the arrows of A to connect corresponding

nodes from each copy of B . That is, remove the A diagram but treat its arrows as a

blueprint for how to connect corresponding nodes in the copies of B .

In the example in Figure 7.2, each C4 has four nodes. Thus the top pair of nodes

correspond to one another, and we connect them as a little copy of C2. We do the

same with the pair below them, and so on through all four pairs, resulting in a complete

Cayley diagram for C2 �C4. Because this step is more complicated than the first two,

Figure 7.3 is devoted to illustrating this step alone.

From the diagram created in Step 2

of Definition 7.1,

remove the outer nodes from A

(which in this case is C2),

and spread the arrows ofA over cor-

responding elements from each copy

of B (in this case C4).

The result is one unified diagram for

A � B , in this case C2 �C4.

Figure 7.3. An example execution of Step 3 of Definition 7.1, illustrated in greater detail than
Figure 7.2 shows. As in Figure 7.2, in this example, A D C2 and B D C4 .
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120 7. Products and quotients

The group A�B whose Cayley diagram results from the procedure in Definition 7.1
is called the direct product of A and B , and we call A and B its factors. Note that it
was essential to use different colors for A arrows than B arrows in Step 2, so that the

merge in Step 3 created a valid diagram. Note also that it was helpful (though not strictly

essential) to orient the copies of B perpendicular to the copy of A.

Notice that C2 �C4 has copies of C2 as its rows and copies of C4 as its columns. The

process described in Definition 7.1 uses two copies of C4 and connects corresponding

pairs of nodes from each copy, turning each pair into a copy of C2. But the same diagram

would have been achieved doing the product in the other order. Figure 7.4 shows that

the direct product C4 � C2 gives a group that is isomorphic to C2 � C4. The C4 � C2

structure is simply the C2 �C4 structure turned on its side. It turns out that A�B always
has the same structure as B �A, for any groups A and B . We say that the direct product
operation is commutative, and Exercise 8.36 asks you to prove it. For now, I use this fact
without having given evidence for it.

cyclic group C4 each node contains

a copy of C2

direct product

group C C4 2´

Figure 7.4. Constructing a Cayley diagram for the group C4 � C2, using Cayley diagrams of

C4 and C2 and following the procedure in Definition 7.1. The result is a group that is equivalent

to C2 � C4 , as constructed in Figure 7.2.

The nodes in the Cayley diagrams that the direct product process creates have no

labels, but it would be helpful if they did so that we may refer to individual elements by

name. There is a standard way to give names to the elements in a direct product group.

High school algebra courses teach students to label points in the plane with names like

.1; 3/ and .�10; 6/. These names are .x; y/ pairs, the left number designating the point's
x position and the right number its y position. In A�B , we give each element a name that
is a pair .a; b/, with the a coming from A and the b coming from B . In the two simple

examples we've seen so far, we can follow the high school algebra convention, with the

first entry in the pair (the a) representing horizontal position, and the second entry (the b)

representing vertical position, as shown in Figure 7.5.1 In general, for a node in any direct

product Cayley diagram, both components of its name come from Step 2 of Definition

7.1. A node gets the a component of its name from the inflated A node to which it

belonged, and the b component of its name from the inner B node that it once was. In

the simple examples in Figure 7.5, these correspond to columns and rows, respectively.

Given our recent work with subgroups, you may have noticed that C2 is a subgroup

of C2 �C4; specifically, it is the subgroup h.1; 0/i. Furthermore, the cosets of h.1; 0/i are
clearly visible as the rows of C2 � C4. They are both left and right cosets, which makes

1 You could instead choose to do it the other way around, following the row-then-column convention of

matrix algebra. The difference is superficial. In more complicated examples, it won't be possible to keep the

horizontal/vertical distinction, but it's helpful when getting started.
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Steps 2 and 3 in the

construction of C2 � C4,

with the element naming

convention included

0

1

2

3

0

1

2

3

0

( , )0 0

( , )0 1

( , )0 2

( , )0 3

( , )1 0

( , )1 1

( , )1 2

( , )1 3

1

Steps 2 and 3 in the

construction of C4 � C2,

with the element naming

convention included

0 1 32

0

1

0

1

0

1

0

1

( , )0 0 ( , )1 0 ( , )2 0 ( , )3 0

( , )0 1 ( , )1 1 ( , )2 1 ( , )3 1

Figure 7.5. An element .a; b/ in A � B gets its name from the a in A and b in B that gave

rise to it in Step 2 of Definition 7.1. Colored numbers are used to make it easier to see that the

names of the inflated A nodes go on the left of each pair, and the names of the inner B nodes on

the right.

C2 a normal subgroup. I mentioned normal subgroups in passing in Chapter 6, but they

will be important throughout this chapter, so it's time for a formal definition.

Definition 7.2 (normal subgroup). A subgroup H < G is called normal if each left
coset of H is also a right coset of H (and vice versa). We indicate that H is a normal

subgroup of G by writing H C G.

We can therefore write the fact we just noticed as h.1; 0/i C C2 � C4. Similarly, C4

is normal in C2 �C4 as the subgroup h.0; 1/i and its cosets are the columns of C2 �C4.

We will see that the factors in any direct product are normal subgroups (Exercise 7.12).

That is, for any groups A and B , we will always have A C A � B and B C A � B .

7.1.2 More direct product examples

Let's flesh out our understanding of the direct product by moving beyond the basic

example of C2 � C4, to the group C2 � C2 � C2, which we first saw long ago in Figure

2.10. A three-dimensional direct product, such as C2 �C2 �C2, can be thought of as two

products taken successively, as in .C2 � C2/ � C2. The parentheses suggest we should

first compute C2 �C2, and then take the direct product of that group with C2 again. This

involves using the process in Definition 7.1 twice in succession, as illustrated in Figure

7.6. Notice that each time a diagram's nodes are inflated to contain copies of C2, a new

direction is used for the sake of clarity. The first inflation creates vertical C2 copies and

the second creates C2 copies that extend deeper into the page, perpendicular to it. The

result is a two-by-two-by-two grid, as the name C2 � C2 � C2 suggests.

Thinking of the group as .C2 � C2/ � C2 suggests assigning the elements awkward

names like ..0; 1/; 0/. The usual convention, however, is to use only one set of parentheses,

naming group elements things like .0; 1; 0/. The first number in this three-part name is

an element from the first C2 factor, the second is from the second, and the third is from
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cyclic group C2
each node contains

a new copy of C2

direct product

group C C2 2´

first application of the direct product process

second application of the direct product process

direct product

group C C C2 2 2´ ´
each node contains

a new copy of C2

Figure 7.6. An example direct product with three factors, C2 � C2 � C2 . Constructing such a

product involves applying Definition 7.1 twice, as marked in the figure.

the third. Similarly, for a group like C2 � C2 � C2 � C2, elements will have names

like .1; 0; 1; 1/, and so on for larger products. I occasionally shorten such names to

make diagrams easier to read, as I did in Figure 2.10, dropping parentheses and commas

altogether and turning .0; 1; 0/ into 010. This shortening is handy for making diagrams

readable, as long as the names of the elements remain clear.

Our final example, S3 � C2, involves a slightly larger, non-abelian group. It is not

convenient to line up all the nodes in S3 in one row, as I did in the previous example,

so I render it as I have before, as on the left of Figure 7.7. When filling each node in S3

with a copy of C2 inthe middle of that figure, I align the copies of C2 to extend deeper

into the page, as I did in the C2 � C2 � C2 example. The result, on the right of Figure

symmetric group S3 each node becomes a copy of C2 direct product group S C3 2´

Figure 7.7. The direct product construction for S3 � C2
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7.7, is our first non-abelian direct product. Following the naming convention from the

previous section, elements in the direct product will have the following names.

Front copy of S3: .e; 0/ .r; 0/ .r2; 0/ .f; 0/ .rf; 0/ .r2f; 0/

Back copy of S3: .e; 1/ .r; 1/ .r2; 1/ .f; 1/ .rf; 1/ .r2f; 1/

7.1.3 Why direct products?

We have seen how to construct direct products, but of what value is this technique? It is

one of several common, simple techniques for creating larger groups. If we understand the

technique, we can understand some large groups more simply. This section explains how,

using the fact that the factors in a direct product are independent. In a Cayley diagram

for A � B , following A arrows neither impacts nor is impacted by the location in group
B .

For example, in the C4�C2 diagram I constructed in Figure 7.4, following a horizontal

(C4) arrow navigates to a new column, but stays in the same row. Another way to say it

is that the green A arrows only impact the left component of each element's name (the

A component). The orbit of the green arrow in C4 � C2 is as follows.

(0, 0) (1, 0) (2, 0) (3, 0) (0, 0) …

Similarly, following a vertical (C2) arrow changes the row and thus the second component

of the element name, but stays in the same column and thus keeps the first component of

the element name the same.

(0, 0) (0, 1) (0, 0) …

In a sense, the A arrows move you only in A and not in B , and the B arrows move you

only in B but not in A. This independence of the two factors in a direct product leads to

a new, useful way to think about direct product groups, which I now introduce.

We normally think of navigating a Cayley diagram by picturing each node as a place

and the arrows as paths between places. You can picture yourself located at just one node

at a time, and walking a path to get to another. As you do this imaginary walk through

a group, what would it be like to stop and check a roadside map? Such a map could be

a Cayley diagram for the group, with a \You are here" marker pointing to the node in

which you stand, like one of the maps in Figure 7.8.

1 3 0 1 3

0 1 32 0 1 33

0 2

You are
here

2

2

You are
here

You are
here

You are
here

Figure 7.8. Four example roadside maps for a Cayley diagram of the group C4, one map for

each node
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Navigating a direct product group can be thought of as navigating two different Cayley
diagrams simultaneously, and independently. Figure 7.9 shows maps analogous to those
in Figure 7.8, but each map in Figure 7.9 shows two groups and highlights a location in
each. Perhaps rather than trying to imagine yourself in two places at once, imagine yourself
remotely directing the movements of two others, sometimes instructing one person who's

walking in C4 which path to follow, and at other times instructing another person who's

walking in C2 to move. Your directing two people through two Cayley diagrams is a

perfect analogy to your navigating the direct product group by yourself. Each node in

C4 � C2 is named for a C4 node and a C2 node, and we can interpret those names as

horizontal and vertical positions of the original node in the C4�C2 grid, or as two different
nodes in separate diagrams, one for C4 and one for C2. For instance, the element .1; 0/ in

C4�C2 can mean either the node in the second row and first column in theC4�C2 diagram

in Figure 7.5, or it can mean the second roadside map in the top row of Figure7.9. Thus we

have two equivalent ways to think of a direct product group like C4 �C2. We can think

of the direct product Cayley diagram, or of two Cayley diagrams used in tandem.

1

2

3

0

1

0

1

2

3

0

0

1

0

2

3

1

1

0

0

2

3

1

1

0

1

3

2 1

0

0

1

3

2

0

1

0

1

2

3

1

0

0

1

2

3

0

1

0

You
are
here You

are
here You

are
here You

are
here

You
are
here You

are
here You

are
here You

are
here

Figure 7.9. Each of these maps depicts a two-part location as you simultaneously navigate the
two groups C4 and C2 .

Let me make clear what I mean when I ask you to imagine directing two people who

move independently. The motions of either person have no impact on either the position

or the motion of the other person. A situation without such independence is shown in the

rectangular Cayley diagram forD4 in Figure 7.10. Vertical movements in that diagram can

change horizontal positions, and thus the horizontal is not independent from the vertical.

For instance, moving vertically from .1; 0/ does not result in .1; 1/, but rather in .3; 1/. In

C4 � C2, however, a vertical move from .1; 0/ would result in .1; 1/, causing no change

in horizontal position. Although you could rearrange and rename the nodes of D4 to fix



\master" | 2011/10/18 | 17:10 | page 125 | #139
i

i

i

i

i

i

i

i

7.1. The direct product 125

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

Figure 7.10. A rectangular layout of D4, with elements named according to their row and

column, as if it were a direct product group (which it is not).

this one problematic column, the tangles inherent in the structure of D4 would create

similar problems in other columns as you did so.

We saw our first example of two groups joined independently in Figure 2.8 on page

20. In the two-lightswitch group, each switch is independent of the other in the sense that

flipping either one leaves the other unchanged. Alone, each switch is described by the

group C2, and so together, they are described by the group C2 � C2, the more common

name for which is V4.

One of the benefits of viewing direct products as two groups to be navigated simulta-

neously is that some large groups become simpler to visualize. For instance, rather than

draw the 56-element group D4 � C7 as a rather messy 56-node Cayley diagram, we can

instead draw two side-by-side Cayley diagrams, one for D4 and one for C7, and picture

navigating them simultaneously and independently. Elements such as .r2; 5/ represent

two positions, one in D4 and one in C7, as shown in Figure 7.11. This involves drawing

(and reading) many fewer nodes and arrows, and keeps us from having to look at any

structure with more than eight nodes. Furthermore, not only is the 56-element group still

faithfully represented (though less directly), but representing it as shown in Figure 7.11

helps us better understand the overall 56-element structure by seeing how it can be built

by the direct product process. Thus direct products are one way of making some large

groups easier to understand, by showing us how the larger group is built from smaller

groups using a simple process.

e

f

rf rr3

r  f2

r2

0

1

2

34

6

5

r f3

Figure 7.11. The element .r2; 5/ from the group D4 � C7, viewed as a pair of elements, one

in a Cayley diagram from D4 and one in a Cayley diagram of C7 .
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126 7. Products and quotients

7.1.4 The algebraic viewpoint

Both ways this book has taught us to approach group theory, from the actions-based view-

point and from the algebraic one, are helpful in understanding group theoretic concepts.

So let's try to understand direct product groups from the algebraic viewpoint as well,

seeing them as a set of elements with a binary operation on it. Because multiplication

tables show us groups in this way, knowing how to construct direct product multiplication

tables is a good place to start. Fortunately, just as there is a visual way to create Cayley

diagrams of direct product groups (Definition 7.1), there is also a visual way to create

multiplication tables of direct product groups.

Definition 7.3 (technique for constructing direct products of multiplication tables). To

create a multiplication table for the direct product group A�B from multiplication tables
for the groups A and B , follow these three steps. Notice how analogous they are to the

steps in Definition 7.1. Figure 7.12 illustrates them using A D C4 and B D C2 as an

example.

1. Begin with a multiplication table for A.

In Figure 7.12, the table for C4 is shown with blue element names.

2. Inflate each cell in the table to include a copy of the entire multiplication table for B .

To avoid losing the information from the original table for A, retain its labels as well.

In the middle of Figure 7.12, the large, blue numbers were retained from the C4 table,

and now they sit over red copies of the table for C2.

3. Rename the elements in the table as pairs, using the A elements on the left of each

pair and the B elements on the right.

Each number in each pair in the C4 � C2 table of this example kept its original color

so that you can tell which table it came from.

This construction process, illustrated in Figure 7.12, can tell us a lot about the binary

operation in the product group C4 � C2. For starters, we can use its final table to do

multiplication in C4 �C2. For example, to find .2; 1/ � .3; 1/, we can look up the entry in

0 1 3

1

2 3 1

3

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

1 2

3

0

3

0

1

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0
0

0 1

1 0
2

0 1

1 0
3

1 2 3

0

1

2

032

2

0

210

multiplication table
for the group C4

inflate each cell to also contain a
copy of the multiplication table for C2

join the little tables and element names
to form the final direct product table

( , )3 1 ( , )3 0 ( , )2 1( , )1 1 ( , )1 0( , )0 1 ( , )0 0

( , )3 1( , )3 0 ( , )2 1( , )2 0( , )1 1( , )1 0( , )0 1( , )0 0

( , )3 1 ( , )3 0( , )2 1 ( , )2 0 ( , )1 1 ( , )1 0( , )0 1 ( , )0 0

( , )3 1( , )3 0( , )2 1( , )2 0 ( , )1 1( , )1 0( , )0 1( , )0 0

( , )3 1 ( , )3 0( , )2 1 (2, )0( , )1 1 ( , )1 0 ( , )0 1 ( , )0 0

( , )3 1( , )3 0( , )2 1( , )2 0( , )1 1( , )1 0 ( , )0 1( , )0 0

( , )3 1 ( , )3 0( , )2 1 ( , )2 0( , )1 1 ( , )1 0( , )0 1 ( , )0 0

( , )3 1( , )3 0( , )2 1( , )2 0( , )1 1( , )1 0( , )0 1( , )0 0

( , )2 0

Figure 7.12. Constructing a multiplication table for C4 � C2 from multiplication tables for

C4 and C2 , following the technique in Definition 7.3. Row and column headings could easily be

added, but the process is more clearly illustrated without them.
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7.1. The direct product 127

row .2; 1/ and column .3; 1/ of the table, finding the answer .1; 0/. But what we really

want to know is why the table gives the answer that it does. The way the table was
constructed answers that question.

The structure of the final table in Figure 7.12 was determined by the two overlaid tables

in the middle of that figure. The pattern of the blue numbers in the direct product table was

copied directly from the pattern of the large, blue numbers in the middle table, which in

turn come from the original table for C4. Thus the way the left (blue) elements in the pairs

in the final table relate is determined by the original table; that is to say, it's determined

only by their status in C4, and in no way depends on the red elements with which they

are paired. So the reason that the left component of the answer to .2; 1/ � .3; 1/ is 1 is that
2 C 3 D 1 in C4. The right elements are irrelevant when computing the left half of the

answer. The left table in Figure 7.13 illustrates this by showing that any element whose left

entry is 2 times any element whose left entry is 3 results in an element whose left entry is 1.

(2,?)s

(3,?)s

(1,?)s
( ,0)1( ,1)1

( ,0)1 ( ,1)1

( ,0)2( ,1)2

( ,0)2 ( ,1)2

( ,0)3

( ,1)3( ,0)3

( ,1)3

(0,0)

(0,1)

(0,0)(0,1)

(1,0)

(1,1)

(2,0)(2,1)(3,0)

(3,1)

(0,0) (0,1)

(1,0)

(1,1)

(2,0) (2,1)(3,0)

(3,1)

(0,0)(0,1)(1,0)(1,1) (2,0)(2,1)

(3,0)(3,1)

(0,0) (0,1)(1,0) (1,1) (2,0) (2,1)

(3,0) (3,1)

(0,0)(0,1) (1,0)(1,1) (2,0)(2,1)

(3,0)(3,1)

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

(3,0) (3,1)

(0,1)

(0,0)

(?,1)s

(?,1)s

(1, )0( ,1)1

(1,0) ( ,1)1

(2, )0( , )2 1

(2,0) ( ,1)2

(3, )0

( , )3 1(3,0)

( ,1)3

(0,0)

(0,1)

(0, )0(0,1)

(1, )0

(1,1)

(2, )0(2,1)(3, )0

(3,1)

(0,0) (0,1)

(1,0)

(1,1)

(2,0) (2,1)(3,0)

(3, )1

(0, )0(0,1)(1,  )0(1, )1 (2, )0(2,1)

(3, )0(3,1)

(0,0) (0,1)(1,0) (1,1) (2,0) (2,1)

(3,0) (3,1)

(0, )0(0, )1 (1, )0(1,1) (2, )0(2,1)

(3 ),0(3,1)

(0,0) (0, )1 (1,0) (1, )1 (2,0) (2, )1

(3,0) (3,1)

(0,1)

(0, )0

sixteen
(?,0)s
throughout

Figure 7.13. The multiplication table for C4 �C2 constructed in Figure 7.12, used to show the

independence of the factors in a direct product. The left table shows that any element .2; ‹/ times

any element .3; ‹/ results in some element .1; ‹/. The right table shows that any element .‹; 1/ times

any element .‹; 1/ results in some element .‹; 0/.

A similar fact holds for the red numbers in the final table of Figure 7.12. Their pattern

is made from many copies of a C2 table. The blue number under which a C2 copy lay in

the middle table in no way affected that table; it was the same everywhere. Thus the right

component of the answer to .2; 1/ � .3; 1/ is 0 because 1C 1 D 0 in C2; the 2 and 3 are

irrelevant. This is illustrated on the right of Figure 7.13, which shows that any element

whose right entry is 1 times any element whose right entry is 1 gives an element whose

right entry is 0. The pattern depends upon the fact that all the C2 copies are the same;

when we do the 1C 1 computation in 16 identical copies of C2, we get the same answer

all 16 times.

So we find that to compute .2; 1/ � .3; 1/ in C4 � C2 we only need to know how to

compute 2C 3 in C4 and 1C 1 in C2. Each component in the pairs is treated completely

independently, as summarized in the following equation.

.2; 1/ � .3; 1/ D .2 C 3; 1C 1/ D .1; 0/

We have already seen the independence of the factors in a direct product show up in
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Cayley diagrams; the principle above describes how that same independence appears in

multiplication tables.

Now we are in a position to express that independence in algebraic terms. Take

elements a 2 A and b 2 B . If we use e to stand for the identity in each group, then the
corresponding elements in the direct product group are .a; e/ and .e; b/. The following

chain of equalities shows that .a; e/ and .e; b/ commute, based on the independence of

factors discussed above.

These equalities depend on the principle above.

The equation as a whole says that ( , ) and ( , ) commute.a e e b

Thus the independence of factors in a direct product means that elements from one factor

commute with elements from the other. Returning for a moment to considering Cayley

diagrams, this means that arrows from one factor commute with arrows from the other.

Figure 7.14 illustrates this idea using two different diagrams.

Figure 7.14. The left Cayley diagram illustrates the equation a � b D b � a in C3 � C3 , and the

right Cayley diagram illustrates the equation a3 � b2 D b2 � a3 in C4 � C3 . In each case, a is the

red generator and b is the blue generator.

We now have a well-rounded view of the direct product, having seen it from both the

actions-based and algebraic viewpoints. It is time to progress to another kind of product

operation, also useful for breaking large groups down into smaller conceptual pieces.

Although it is more intricate than the direct product, they have in common that if we

understand the ingredients in the construction and the construction process, then we gain

the ability to understand the resulting large group, even if it is too complex to diagram.

7.2 Semidirect products

The clean and simple direct product operation we just learned has two more complex

cousins. I introduce the semidirect product here, but do not cover the more complex knit
product in this book. Even the semidirect product depends on some concepts we will not
learn until Chapter 8, so this section gives an initial taste of semidirect products, but the

remainder must wait until the following chapter. As was the case with direct products,
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the reason for learning semidirect products is to have understandable ways to describe

the structure of large groups more simply.

We've learned that direct products are made up of identical copies of one factor, with

corresponding elements connected according to the pattern of the other factor. Semidirect

products are very similar, in that they have two factors, and one determines the pattern

for connecting corresponding elements in copies of the other. Where they differ is that

those copies need not all be laid out in an identical way. Some twisting is permitted

in the copies, and thus more intricacy is possible. To describe the kind of twists that

semidirect products allow, I introduce the following term. It is not standard group theory

terminology; in fact, we will replace it with a more technical term later. But for now, a

visual term is appropriate.

Definition 7.4 (rewiring). I call one Cayley diagram a rewiring of another if all the
following conditions are met.

(a) The two diagrams must have the same arrangement of nodes.

(b) The diagrams may have their arrows arranged differently.

(c) The algebraic relationships among group elements must be the same in both diagrams.

Condition (b) is not really a restriction, but appears on the list to highlight the major

feature of rewirings, which is the differing patterns of arrows between the two diagrams.

Another way to state condition (c) is that although the two Cayley diagrams are different,

they correspond to the same multiplication table and thus describe the same group.

Figure 7.15 shows C3 and a rewiring of it. Let's consider how it satisfies each of

the three criteria of Definition 7.4. Condition (a) requires that the nodes be arranged

the same in both diagrams, which is obvious from the figure. Condition (b) permits the

arrows to connect the nodes differently in the two diagrams, which they do; one diagram

cycles clockwise, the other counterclockwise. Verifying condition (c) means verifying that

every equation that one diagram satisfies, the other does as well. (This is what \algebraic

relationship" means here.) For example, the left diagram satisfies a � a D a2, because

following two red a arrows from e reaches a2. So we must verify that the right diagram

also satisfies this equation. It does satisfy it, but for a different reason than the left

diagram. In the right diagram, a is represented by two red arrows in succession, so a � a
is four red arrows, which leads from e to a2 only after going around the whole diagram

once. We could also verify that both diagrams satisfy a3 D e, and many other equations.

To be thorough, we could convert each Cayley diagram into a multiplication table, and

we would find the resulting multiplication tables to be the same. So the two diagrams

describe the same group. Thus Figure 7.15 satisfies all three conditions.

e

a2 a

e

a

reverse arrows

a2

Figure 7.15. The left diagram is a familiar Cayley diagram for C3, and the right is a rewiring

of it. Reversing either diagram's arrows yields the other diagram.
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h v d

h v d

Figure 7.16. Two ways to rewire a Cayley diagram for V4, described as permutations of

horizontal (h), vertical (v), and diagonal (d ). The permutations refer to diagonal (d ) arrows even

though the original diagram has only horizontal and vertical arrows, because they can be rearranged

to diagonal positions.

Figure 7.16 shows a slightly larger example, two ways to rewire V4, each described

as a permutation of the diagrams' arrows. The top rewiring performed twice returns the

diagram to its original state, because it is simply an exchange of horizontal arrows with

vertical ones. The bottom rewiring, however, must be repeated three times to return to

the original diagram, and it is therefore described by a permutation with order 3.

It may also be helpful to contrast these first two examples with two examples of

what is not a rewiring, in Figure 7.17. Its top row shows a way to rearrange a Cayley
diagram's arrows that does not produce another Cayley diagram. It is therefore not a

rewiring because Definition 7.4 applies only to two Cayley diagrams. The bottom row

of the same figure shows a transformation that does not keep the algebraic relationships

among the group elements the same, even though it transforms one 4-cycle into another.

For instance, 2 C 2 D 1 in the right diagram, but to satisfy condition (c) of Definition

7.4 it ought to be 2C 2 D 0, as in the left diagram.

0

2

3

0

2

31 1

Figure 7.17. Two rearrangements of Cayley diagram arrows that are not rewirings.
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As you may have suspected from the fact that Figure7.16 uses permutations to describe

rewirings, we can put a collection of rewirings together to form a group. The simplest

example is in Figure 7.15; not only does it show a way to rewire C3, but if we view each

Cayley diagram in Figure 7.15 as one single node, then the overall picture has the structure

of the group C2, whose only arrow is the one in the center of the diagram, labeled \reverse

arrows." A more interesting example is the group of all rewirings of V4, generated by the

two rewirings from Figure 7.16. It has the structure of S3, and is shown in Figure 7.18.

h v d

h v d

Figure 7.18. The group of all rewirings of V4, generated by the two in Figure 7.16. The

meanings of the arrows are given by the legend in the upper right.

Diagrams like those in Figures 7.15 and 7.18 are reminiscent of the direct product

construction, because they treat Cayley diagrams as nodes to be connected. This is what

Step 2 of Definition 7.1 asks us to do, as shown in the middle diagrams in Figures 7.2

and 7.4. The important difference between the direct product construction and groups of

rewirings is that not all the Cayley diagrams in a rewiring group are identical. On the

contrary, each is different! If we connect the rewirings in Figure 7.15 or 7.18 as Step 3 of

Definition 7.1 taught us to do, the group that results is called a semidirect product group.
Figure 7.19 illustrates doing such a connection to the diagram from Figure 7.15. We call

the result a semidirect product of C3 with C2, because the individual groups in Figure

7.19 are rewirings of C3, while its overall structure is that of C2. A semidirect product

of C3 and C2 is written C3 Ì C2.

This semidirect product construction can be stated more generally as follows: From

a group G, draw a Cayley diagram of its rewiring group, and connect the rewirings as

we connected copies in a direct product (in Step 3 of Definition 7.1). You could use this

procedure to draw a Cayley diagram of the group V4 Ì S3 based on Figure 7.18. But

semidirect product groups created using this procedure are just some of the semidirect
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reverse arrows

use the arrow in the
rewiring group to
connect corresponding
elements in each rewiring

Figure 7.19. Applying Step 3 of Definition 7.1 to Figure 7.15 yields this semidirect product of
C3 and C2 , structurally identical to S3.

product groups that exist. To be able to describe and build other semidirect product groups

requires using homomorphisms to describe rewirings and combinations thereof. We will

do so in Chapter 8, and will see how to construct various A Ì B for any two groups A

and B .

7.3 Normal subgroups and quotients

In Section 7.1.3 we saw that we could make some large groups more easily understandable

if we described them as direct product groups. Understanding the factors and the direct

product process gave us a simple way to picture an otherwise complex group. We need a

similar technique for deconstructing semidirect products as well. It is therefore natural to

wonder how to recognize a Cayley diagram of a product group when we see one. That is,

if you didn't construct the Cayley diagram yourself, how could you tell that it represented

A�B or A Ì B , for some groups A and B? And how could you tell what A and B are?

The most general way to deconstruct a large group into two factors is called taking

a quotient; it reveals not only direct products but semidirect products as well. When a
quotient exposes a direct or semidirect product, it gives us clear insight into the group's

structure. (This will be even more true after we learn more about semidirect products

in Chapter 8.) Quotients can even be used to organize groups that were not built by a

direct or semidirect product operation, and the structure they reveal is often helpful for

understanding the large group in those cases as well. Group products multiply groups, and

group quotients divide them. We divide a group by one of its subgroups as follows. As

with the other processes introduced in this chapter, I include in the definition an example

that illustrates the process.

Definition 7.5 (quotient operation). To attempt to divide a group G by one of its

subgroups H , follow these steps.

1. Organize a Cayley diagram of G by H (as we first did in Section 6.3).

The top diagram in Figure 7.20 shows this for G D C6 and H D h2i. Notice that the
cosets of H have been grouped together in rows, in preparation for the following steps.
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0

5

2

1

4

3

0

5

2

1

4

3

1H

H

H

1H

C
H

6 organized by
the subgroup = 2á ñ

Left cosets of
are near each other

H

Collapse cosets
into single nodes

Figure 7.20. Application of the quotient process of Definition 7.5 to the group G D C6 and

subgroup H D h2i, isomorphic to C3. Notice that organizing the Cayley diagram of G by the

subgroup H facilitates collapsing of the cosets of H .

2. Collapse each left coset of H into one large node.2 Unite those arrows that now have

the same start and end nodes. This forms a new diagram with fewer nodes and arrows.

The middle and bottom diagrams in Figure 7.20 show this process in two steps.

3. If the new diagram is a Cayley diagram of a group, then you have obtained the quotient
group of G by H , and the new diagram shows that group. If not, then G cannot be

divided by H .

The bottom diagram in Figure 7.20 is of the group C2, so C6 divided by C3 is C2.

We can already see one obvious way in which this quotient operation is like a re-

versal of both product operations we've seen. Both product processes created copies and

arrows among them, while the quotient process collapses both copies and arrows. Another

important detail to notice and understand in this example and in each example to come

is that the elements in a quotient group are the cosets of the original subgroup H . The
names of the nodes in the bottom diagram in Figure 7.20 make this clear.

But what was the original structure that this quotient operation deconstructed? Is C6 a

direct product, a semidirect product, or something else? We can tell that it is a direct prod-

uct because the Cayley diagram for C6 on the top of Figure 7.20 could have been created

by the direct product construction: It is two copies of C3 with corresponding elements

2 I will use the informal word \collapse" from here on to refer to this clustering or collecting of several

nodes together into one node. Probably the most natural English word for this type of uniting is \grouping,"

but obviously we're already using the word \group" to mean something else!
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connected after the pattern of C2. Step 1 of Definition 7.5 is essential because it reorga-

nizes the Cayley diagram to bring out a structure that another layout of the same diagram

may disguise. The group C6 is therefore the group C3 �C2, although we already knew this

from the last chapter (and Figure 6.5 in particular). If you're wondering which other cyclic

groups hide direct products inside them, we'll answer that question in Section 8.4!

Using the quotient process to deconstruct any direct product group reveals the two

factors as follows. The left factor A is the subgroup by which Step 1 organizes the

diagram, and the right factor B is the result of taking the quotient, the final diagram that

the process creates.

A subgroup isomorphic to C3 also appears in the group S3, a group with a lot in

common with C6. Let's try to divide S3 by C3, and compare it to the previous example.

Figure 7.21 shows the three steps of the quotient process applied to the group S3. Although

both quotients
C6

C3
and

S3

C3
give the result C2, the groups are not the same. The quotient

process has removed their differences.

I mentioned earlier that the quotient
C6

C3
disassembled a direct product, so it is natural

to ask whether the quotient
S3

C3
also did. Notice that the blue arrows in S3 cross in

the top diagram of Figure 7.21; they do not connect elements of the C3 subgroup with

corresponding elements of its coset. Thus S3 is not the direct product of C3 with C2. If we

rearrange the nodes in the bottom row of S3 to uncross the blue arrows, the result is shown

f H

H

H

S
H r

3 organized by
the subgroup = á ñ

Left cosets of
are near each other

H

Collapse cosets
into single nodes

r2

r2f

e r

f rf

e r2r

r2ff rff H

Figure 7.21. Application of the quotient process of Definition 7.5 to the group G D S3 and

subgroupH D hri, isomorphic to C3 . The result is the same as when we divided C6 by a subgroup

isomorphic to C3 , because the differences in the original groups have been removed by the quotient

process.
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in Figure 7.22. Although this means that corresponding elements are now connected, the

bottom row is no longer an exact copy of the top row; it is a rewiring of it instead. Thus

while S3 is not a direct product, it is a semidirect product of C3 with C2. In fact, Figure

7.22 is just another layout of Figure 7.19.

r2

r2f

e r

f rf

Figure 7.22. A rearrangement of the bottom row of S3 from Figure 7.20 to uncross the vertical
arrows.

We have therefore seen how quotient operations can reveal each of two different

product structures. When a quotient operation yields identical copies with correspond-

ing elements connected, it reveals a direct product structure. When it yields a group of

rewirings with corresponding elements connected, it reveals a semidirect product struc-

ture. We will also see quotients that reveal neither of these patterns, but that nonetheless

help us see structure in a large group (e.g., Exercise 7.18).

These first examples have been informative, but small. An instructive larger example

is the group A4, which we saw in Figure 5.27. That figure emphasizes the relationship

between A4 and the symmetries of the tetrahedron, but it doesn't tell us much about

the group's internal structure. Finding a way to take a quotient of A4 reveals a simpler

structure therein. Let's take a quotient of A4 by a subgroup isomorphic to V4.

Following Step 1 of Definition 7.5, the top of Figure 7.23 shows A4 organized by the

subgroup hx; zi. This reorganization required using arrows for the generators x and z, as
well as a generator that connects cosets of hx; zi, in this case a. Step 2 of Definition 7.5
asks us to collapse each of the three left cosets of hx; zi into a single node, uniting any
arrows that are thereby rendered redundant. Doing so reveals a three-step cyclic structure

in A4, as shown on the bottom of Figure 7.23. Therefore
A4

V4
is isomorphic to C3.

Has this quotient reversed any kind of product? We can tell that it is not a direct prod-

uct because the Cayley diagram on top of Figure 7.23 shows that the arrows connecting

the cosets of H do not connect corresponding elements. For example, the top right node

of H is not connected to the top right node of aH . Just as in the S3 example above,

this is not an issue simply of layout. Although we could rearrange the diagram's nodes to

make the arrows connect corresponding elements of each coset, it would alter the layouts

of those cosets, as in Figure 7.24. This trade-off is an unavoidable consequence of the

tangled structure of A4; you can either arrange the arrows the same or the cosets, but not

both.

So A4 is not V4 �C3, but it may still be a semidirect product. Having rearranged the

cosets of V4 in Figure 7.24 so that the arrows connect corresponding elements, we notice

that they form the outer ring of the semidirect product group V4 Ì S3 whose blueprint

appears in Figure 7.18. Figure 7.25 shows the pattern. The group A4 therefore forms

one of that large group's subgroups, and when we learn the full generality of semidirect
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e

aa2 c

d b

z y

H

aH

e

a c

d b

z y

H

A
H x, z

4 organized by
the subgroup = á ñ

Left cosets of
are near each other

H

Collapse cosets
into single nodes

b2

d2c2

x

a2

a2H

d2

b2

c2

x

a2H aH

Figure 7.23. The quotient process computing A4

V4
. All blue arrows from H lead to aH , and all

blue arrows from aH lead to a2H , and then back to H .

products in Chapter 8, we will learn how to express A4 as a semidirect product of C3

and V4. For now, the quotient process has revealed to us that A4 has the simple structure

shown in Figure 7.25.

As the wording of Step 3 of Definition 7.5 suggests, in some cases an attempted

quotient operation does not go smoothly, but instead results in an invalid Cayley diagram.

It is therefore important for us to see an example of just such an invalid result, and A4

can provide us with an example of this type as well. That example will help lead us to a

theorem about when the quotient operation will succeed and when it will fail.
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Figure 7.24. The cosets of V4 in A4 rewired to demonstrate its semidirect product structure.

h v d

Figure 7.25. The pattern in A4 as a subgroup of a rewiring group. To create A4, connect the

corresponding nodes in each rewiring with arrows in the three-cycle shown.

When we originally met A4 in Figure 5.27, it was organized by the three-element

subgroup hai. Figure 7.26 shows an attempt to divide A4 by this subgroup, but the result

is not a valid Cayley diagram. It is invalid for several reasons, but the most obvious one

is that the only arrow type in the diagram (the blue) is ambiguous. For instance, from

the top node, the blue arrows lead not to just one node, but to all three other nodes.

Therefore this diagram does not depict a group. (Recall the visual criteria from Exercises

2.14 through 2.17, also mentioned in Section 6.1.)

So quotients succeed for some subgroups and not for others. In order to say we truly

understand the quotient process, we need to know the reason for this. What is it about a

group or a subgroup that determines whether a quotient is possible? As the title of this

section suggests, the deciding factor is whether the subgroup is normal.

Theorem 7.6. If H < G, then a quotient group G
H

can be constructed just when
H C G.

Proof. The quotient process from Definition 7.5 succeeds just when the resulting diagram
is a valid Cayley diagram. Most aspects of valid Cayley diagrams are guaranteed by the

quotient process. For instance, because we begin with a diagram that has an arrow of every

color exiting every node, our resulting diagram has this property as well. Because we begin

with a regular diagram (as in Definition 6.1) and collapse identically structured sections

distributed uniformly throughout the diagram, we end up with a regular diagram as well.
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A
H a

4 organized by
the subgroup = á ñ

Left cosets of
are near each other

H

Collapse cosets
into single nodes

Figure 7.26. An organization of A4 by a subgroup that is not normal, and therefore does not

allow us to take a quotient.

One problem can arise. Recall the requirement that the final diagram in Figure 7.26

violates: only one arrow of a given color must enter or leave any given node. Because

we collapse many nodes into one, dragging their various arrows along for the ride, the

resulting diagram may not satisfy this requirement. So this theorem boils down to the

following fact, for which I have yet to give evidence. Collapsing left cosets results in un-

ambiguous arrows just when the subgroup is normal. I show that this is true by comparing

the appearances of arrows that will become ambiguous after collapsing to the appearances

of those that will not.

Collapsing cosets produces ambiguous arrows when some arrows of a given color

go from nodes of one left coset to nodes of two or more different left cosets. The left

illustration in Figure 7.27 shows this, and it is what caused problems in Figure 7.26. On

the other hand, when all the like-colored arrows from any one coset go unanimously to

another coset, no ambiguity arises, as the right illustration in Figure 7.27 exemplifies.

This is what happened in the first three examples we saw of the quotient process, in

Figures 7.20, 7.21, and 7.23.

The reason that unanimity of arrows occurs among left cosets just when the subgroup

is normal lies in our original visualizations of left and right cosets from Chapter 6. Look
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collapse

cosets

blue arrows go from to
more than one left coset of

g H
H

1

ambiguous
blue arrows

g H1

g H3g H2

g H1

g H3g H2

blue arrows go from
to only one left coset of

g H
H

1

unambiguous
blue arrow

g H1

g H2

collapse

cosets

g H1

g H2

Figure 7.27. Arrows sending a left coset to several others cause ambiguity when the cosets are
collapsed. Arrows unanimously sending a coset to one other coset do not create ambiguity after

collapsing.

again at Figure 6.8 on page 104, which helped us picture a left coset gH as the copy

of H to which the g arrow from e leads. That figure also depicts the right coset Hg as

the nodes that g arrows can reach from H . These visualizations tell us that the defining

characteristic of normal subgroups, gH D Hg, can be restated as follows.

To whichever coset one g arrow leads from H (the left coset gH ),

all g arrows lead unanimously (because it is also the right coset Hg).

This is illustrated in Figure 7.28, which unites the two illustrations in Figure 6.8. Thus

a subgroup is normal just when the arrows leaving the subgroup H are unanimous.

Furthermore, because Cayley diagrams are regular, the pattern of arrows connecting H

to each of its cosets will be repeated at every copy (left coset) of H throughout the

whole diagram. So a subgroup is normal just when every color of arrow between cosets

is unanimous, which is when the quotient operation succeeds.

H gH Hg=

e g
g

h1

g

g

g

h2

h3 h3g

h2g

h1g

Figure 7.28. When H is normal, gH D Hg, and thus the illustrations in Figure 6.8 on page

104 lead us to picture g arrows as unanimously connecting H to gH .

This theorem shows us the very important role that normal subgroups play in group

theory. Originally we described them as those subgroups whose left and right cosets match,

which may not have seemed very significant at the time. But now we know its implica-

tions, that normal subgroups are those by which we can take a quotient, and thereby expose

an overall structure that can help us better understand a large group. I therefore spend the

final two sections of this chapter broadening our experience with normal subgroups and

quotients in preparation for the more advanced material in Chapters 9 and 10.
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7.4 Normalizers

Our return to studying normal subgroups begins with a simple question. Is there a way to

measure how close a subgroup is to being normal? The answer to this question reveals

several interesting patterns that can help our intuition about normal subgroups.

We have said that a subgroup H is normal when every element g in the group
satisfies the requirement gH D Hg. So a simple way to measure how close a subgroup

is to normal is to check how many of the g 2 G satisfy this requirement. As if G were

a democracy, we give to each g 2 G a vote for whether H should be normal, and see

how many vote in favor. Only those subgroups that earn a unanimous victory are given

the coveted title \normal."

At a minimum, we know that every g 2 H must vote in favor, because for any g 2 H ,
both gH and Hg are simply H . (Candidates usually get the votes in their hometown.)

The other extreme is whenH is normal, and all the g 2 G vote in favor. But there may be
levels in between these two extremes as well, and in those cases we can use the number

of elements that voted for H as a measure of how close it came to getting elected normal.

The set of elements in G that vote in favor of H 's normality are called the normalizer
of H in G, usually written NG.H/.

In this democracy, cosets of H always vote together. If some g 2 G satisfies gH D
Hg, then every other element of gH does also. The reason comes from Observation6.5,

which told us that any k 2 gH could be used as the coset representative, so gH D kH

and Hg D Hk. Thus k votes for H (kH D Hk) just when g does (gH D Hg) because

gH and kH are synonyms, as are Hg and Hk. This voting pattern narrows down the

possibilities for what NG.H/ might be, especially regarding its size. Because NG.H/ is

made up of whole cosets, its size will always be a multiple of jH j.
Furthermore, the deciding factor in how a left coset will vote is simply whether it is

also a right coset, because gH votes for H just when gH D Hg. Thus the normalizer

NG.H/ is made up of all the left cosets that are also right cosets. This gives us a

straightforward way to pick out NG.H/ visually in a Cayley diagram. Because it is made

up of those left cosets that are also right cosets, we can describe it more visually by

saying that it is made up of those copies of H that are connected to H by unanimous

arrows. Let's look at a few examples.

I start with a normal subgroup for simplicity. We saw in Figure 7.23 that hx; zi C A4,

and therefore each of its three left cosets is also a right coset; they are all connected to

one another by unanimous arrows. Thus NV4
.A4/ D A4 because the subgroup is normal.

The other extreme appears in Figure 7.26, showing hai, a non-normal subgroup of A4.

It has four left cosets (counting itself) but the arrows are spread so broadly that no left
coset is also a right coset. Thus no element outside the subgroup hai votes for it, making
hai as non-normal a subgroup as we'll ever find; NA4

.hai/ D hai.
Of course a more interesting example would be neither of these extremes, a subgroup

that measures as being somewhat normal, but not all normal. Figure 7.29 shows D6

organized by left cosets of hf i. Consider the left coset rhf i, labeled in the figure. There
is no unanimous collection of arrows connecting hf i to rhf i. The arrow from e to r

makes rhf i a left coset, but the other r arrow leaving H disagrees, heading to r5hf i
instead. Verify for yourself that the same is true for each of the cosets r2hf i, r4hf i, and
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r5hf i; none have a connection to hf i by a unanimous set of arrows. But the case of
r3hf i is different; the r 3 paths do indeed head from hf i to r3hf i unanimously, although
in this Cayley diagram one goes clockwise and the other counterclockwise. Similarly, r3

paths returning from r3hf i to hf i are also in agreement. Thus the normalizer ND6
.hf i/

does not contain only hf i, but one of its cosets is as well, r3hf i. Though hf i does not
get elected to be a normal subgroup, it does get some votes outside its hometown.

e

f

r

rf

f
r

á ñfD6

e f

r3f

f

r3

r3

r3

r3á ñf

r2á ñfr4á ñf

r5á ñf r á ñf

r3f

r3á ñf

á ñf

ND6
(á ñ)f

r2r4

r5

r2fr4f

r5f

Figure 7.29. The subgroup hf i in D6 is not normal, but neither is it its own normalizer. The

normalizer ND6
.hf i/ is hf; r3i, a group isomorphic to V4 , as shown on the right.

The right side of Figure 7.29 shows ND6
.hf i/ lifted out of D6. As you can tell, it is

not just a set of nodes, but is in fact a group in its own right, and hf i is normal in it. These
two facts are not coincidences. We may not have expected that the normalizer would be

a group, but knowing that it is should make it obvious that the original subgroup must be

normal inside its own normalizer. After all, the normalizer consists of just those elements

that voted in favor of the subgroup being normal! So let us see why every normalizer is

a group.

Theorem 7.7. For any H < G, NG.H/ < G as well.

Proof. In the past, I've used the notation ha; b; ci to indicate a subgroup generated by
the elements a, b, and c. Generating the subgroup means combining a, b, c, and their

inverses in all possible ways. We know this will be a subgroup because this kind of

exploration from generators is how we built groups in the first place, in Chapter 2.

Say the elements of NG.H/ are g1; g2; : : : ; gn, and consider the subgroup they gen-

erate, hg1; g2; : : : ; gni. I prove that generating this subgroup does not actually reach any
new elements, but rather hg1; g2; : : : ; gni is just NG.H/. This proves that NG.H/ is a

subgroup of G; it is the subgroup generated by its own elements. I do this by first proving

that multiplying two elements of NG.H/ never reaches outside of NG.H/, then proving

that every inverse of an NG.H/ element is also an NG.H/ element.
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Consider two elements g1 and g2 in NG.H/. Each corresponds to some path in a Cay-

ley diagram for G, and those paths must connect cosets of H unanimously because they

are in NG.H/. Figure 7.30 illustrates the straightforward conclusion that the combined

path g1g2 must also connect cosets of H unanimously. Thus g1g2 is also in NG.H/,

and we see that combining elements in NG.H/ stays within NG.H/.

H

g H1

g1 g2

g1

g1

g1

g2

g2

g2 g H1g2

Figure 7.30. Following sequentially from H g1 and g2 arrows, two different sets of arrows that

connect the cosets of H unanimously, shows that the product g1g2 must also connect the cosets

of H unanimously.

Inverses of elements in NG.H/ are also in NG.H/, as follows. Take any g in NG.H/

and consider a particular unanimous set of g arrows from some left coset aH to another

left coset bH . There are no other g arrows entering bH besides those from aH , because

there is no place for them to go; there is already one from each aH element (matching

the number of bH elements) and no two arrows can have the same destination. Thus g

arrows into bH come only from aH , making g�1 arrows from bH lead unanimously to

aH . This shows that the inverse of any g in NG.H/ is also in NG.H/.

So NG.H/ is a subgroup because it is the subgroup generated by its own elements.

This theorem shows that NG.H/ is always a group, and I mentioned earlier that it is

a group in which H is normal. It is called the normalizer because it answers the question

of how much must be removed from G to make H normal, a variation of the question

that opened this section.

A few important aspects of the relationship H C NG.H/ < G are highlighted in

Figure 7.31. First, the size of NG.H/ is some multiple of jH j, and the size of G is some
multiple of jNG.H/j, so that the three are only different whenH is fairly small compared

to G (at most one fourth its size). Second, the boundary of NG.H/ falls on the boundaries

of left cosets of H , cutting through none of them; it includes cosets whole or not at all,

as we saw earlier. Third, it contains exactly those left cosets of H that are also right

cosets. Although all of G is full of copies of H (its left cosets), the NG.H/ boundary is

as large as it can be while still keeping all of the relationships H C NG.H/ < G true.

Normalizers will be a powerful tool in the advanced study of subgroups in Chapter 9.

7.5 Conjugacy

So far we've been using the most common definition of normal subgroup, that H < G

is normal if gH D Hg for every g 2 G. Another common (and equivalent) way to write
the equation gH D Hg is as gHg�1 D H . This alternate form was obtained from the

original by multiplying both sides by g�1 on the right, then canceling, as follows.
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G

H

g4H Hg= 4

g3H Hg= 3

g1H Hg= 1

g2H Hg= 2

N HG( )

a N H1 G( )

a g H1 1

a g H1 2a g H1 3

a g H1 4

a H1

a g H2 1

a g H2 2a g H2 3

a g H2 4

a g H3 1a g H3 4

a g H3 3 a g H3 2

a N H3 G( )

a N H2 G( )

a H3

a H2

Figure 7.31. Abstract visualization of the relationships H C NG.H/ < G. Cosets of H are

labeled g1H , g2H , etc., while cosets of NG.H/ are labeled a1NG.H/, a2NG.H/, etc.

Original equation: gH D Hg

Multiply both sides by g�1: gHg�1 D Hgg�1

Cancel gg�1 from the right: gHg�1 D H

This equation expresses the same information as the first, and thus it is an acceptable

alternative way to describe what it means for H to be normal.

Just as each side of the equation gH D Hg is a set of group elements, so is each side

of the equation gHg�1 D H . This new equation says that if you take all the elements

h 2 H and multiply each on the left by g and on the right by g�1, yielding ghg�1, then

the new collection of elements you obtain, written gHg�1, is really just the subgroup H .

Visually, that same equation says that all the g�1 arrows lead back from the left coset

gH to the subgroup H .

The motivation for rewriting gH D Hg as gHg�1 D H is to bring out the connection

between normal subgroups and an operation called conjugation. Taking h and surrounding
it with g and its inverse (yielding ghg�1) is called conjugating h by g, and the result is
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called the conjugate of h by g, or just a conjugate. Similarly, gHg�1 is also called the

conjugate of H by g. Because normal subgroups can be defined using conjugation, the

two concepts are tightly related. This section explores some of the consequences of their

relationship.

The expression ghg�1 probably seems rather arbitrary, so I begin by explaining why

conjugating one group element h by another element g often has a natural and useful

meaning. Viewed as a sequence of actions, a conjugate ghg�1 is the action g, followed

by the action h, followed by a reversal of the action g. Many everyday events fit this

pattern. Let h stand for the simple action of opening a jar. When the lid is tight so that

you're having trouble with h, you may heat the lid under hot running water (g), open the

jar (h), and let the lid cool again (g�1). The action h is temporarily moved into a different

context by the action g, and the result is therefore different than if h had been done alone.

As another example, say that action h is a band playing their songs, and action g

is the band driving to the auditorium where they will perform. This band does action h

frequently when rehearsing, but on a concert night things are different. They conjugate

their usual action h by g, thereby moving it into a new setting (and in this case a more

exciting and lucrative one). They drive to the auditorium (g), perform their songs (h),

and then drive back (g�1). A good way to think of any conjugate action ghg�1 is that it

is the action h moved into a new context by the action g. For this reason, an action and

its conjugates often have a lot in common.

These first two examples of conjugacy are easy to understand, but are not examples

from group theory. There are countless group theoretic examples to choose from; let's

look at one from the group A4, the symmetries of the tetrahedron. As before, I use the

names a, b, c, and d in A4 to represent the four 120-degree clockwise rotations about

each of the four different vertices of the tetrahedron. In Figure 7.32 I've labeled the four

vertices A, B , C , and D, corresponding to those four actions. Each of these four rotations

is a conjugate of each of the others. This resonates with the non-group-theoretic examples

above, because each of these 120-degree clockwise rotations is essentially the same as

any other, except in a different context. Let's see exactly why they are conjugates.

d

D

B

A

C

a

b

c

Figure 7.32. A tetrahedron with vertices A, B , C , and D. From each vertex a line through the
opposite face is drawn, and the actions of rotating the entire object 120 degrees clockwise around

each such line are labeled a, b, c, and d , respectively. (Here \clockwise" is interpreted from the

point of view that looks toward the vertex from outside the tetrahedron.)
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I show how to conjugate a by another element of A4 to obtain b, but the work would

be very similar if I chose a different pair of rotations instead. (I ask you to try another in

Exercise 7.37.) The action a is a clockwise rotation about the vertex A. We need an action

that will reorient the tetrahedron so that the action a rotates instead about the vertex B .

This can be done by any action in A4 that repositions B to be the leftmost vertex (where

A is in Figure 7.32), in order to \fool" action a into rotating the tetrahedron about the

vertex B . Action c is just such an action.

Figure 7.33 shows what happens when we conjugate a by c. Each portion of the figure

represents a different one of the three actions in the conjugate, and shows the orientation

of the tetrahedron after that action is completed (assuming it began oriented as in Figure

7.32). The final result has the vertices A, C , and D rotated one step clockwise, as if all

we had done was the one action b. Thus conjugating a by c does indeed result in b. We

can express this algebraically by the equation cac�1 D b. Similar work could show that

any two of the 120-degree clockwise rotations are conjugates.

c
D

B
A

C

D
B

A

C

a

c–1

D

B

A

C

After doing , we find that
has taken the place of .

c
B A

Therefore, the action now
rotates about the point .

a
B

The action puts the
vertex back where it began.

c
B

–1

Figure 7.33. Conjugating a by c results in b, written cac�1 D b. This figure assumes the

tetrahedron began in the configuration shown in Figure 7.32. Thus you can verify the equation

cac�1 D b by picturing the effect of b on the tetrahedron in Figure7.32; your result should be the

result of the conjugation shown here.

Because conjugate elements often share many qualities, it can be informative to par-

tition a group into sets of conjugates. There are three key facts that enable us to use a

relationship like conjugacy to partition a group. You will be asked to prove each of these

facts in Exercise 7.36, and therefore I will not prove them here. One of these facts is that

whenever an element a is a conjugate of an element b, then b is also a conjugate of a. For

this reason, the simpler (and appropriately ambiguous) phrase \a and b are conjugates"

is common.

Table 7.1 partitions the elements of A4 so that the elements in each row are all

conjugate to one another, but not to any elements in any other row. Notice how each row

has a simple, meaningful description that states the similarities the conjugates share. The

four rows in Table 7.1 are called conjugacy classes.
A common way to summarize the information in a table of conjugacy classes is in an

equation saying that the sizes of the conjugacy classes add up to the size of the group.

For example, from Table 7.1, with conjugacy classes of sizes 1, 3, 4, and 4, we would
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Elements Description

e the identity element

x, y, z 180-degree flips (illustrated in Exercise 5.25)

a, b, c, d 120-degree clockwise rotations about vertices

a2, b2, c2, d2 120-degree counterclockwise rotations about vertices

Table 7.1. Conjugacy classes of A4 described.

write

1C 3C 4C 4 D 12:

This is called the class equation for A4; each number on its left side represents a con-

jugacy class and the number on its right side is the group order. Class equations carry

a surprising amount of information for how small and simple they are. The important

use of class equations to which I now draw your attention brings us back to where our

acquaintance with conjugacy started, its connection to normal subgroups.

I began the topic of conjugacy by pointing out that the defining characteristic of

normal subgroups could be expressed as gHg�1 D H . Consequently, any element h in

a normal subgroup H must have all its conjugates in H as well, because any conjugate

ghg�1 is in gHg�1 , which for normal subgroups is H . Another way of saying this is

that for every element in a normal subgroup, its whole conjugacy class is also in the
subgroup. Therefore every normal subgroup is made up of whole conjugacy classes.
A class equation therefore enables us to dramatically narrow down a search for normal

subgroups, as follows. From only the class equation for A4, we can tell that the group has

four conjugacy classes, with sizes 1, 3, 4, and 4. Any normal subgroup of A4 will be one

or more of these classes united together. That is, based on the previous paragraph, we can't

put just half of a conjugacy class in a normal subgroup; we must put the whole thing. So

to find all the normal subgroups of A4, we experiment with different combinations of the

numbers 1, 3, 4, and 4, trying to build subgroups out of conjugacy classes. While doing

so, we have two restrictions. First, because we're trying to build subgroups, we must

always include the conjugacy class containing the identity. Second, Lagrange's Theorem

tells us that the size of the resulting subgroup must divide the size of the whole group, in

this case 12. Once we've taken these two principles into account, only three possibilities

emerge.

The whole group A4, 1C 3C 4C 4

The identity and the flips, 1C 3

The trivial subgroup, 1

No other combinations of 1 with 3, 4, and 4 add up to a factor of 12. The whole group

and the trivial subgroup are normal subgroups of any group, and thus it is not a surprise

to find them on this list. The interesting one is the middle one, standing for the first two

rows of Table 7.1, fe; x; y; zg.
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From this work alone, we cannot conclude that fe; x; y; zg is a normal subgroup. We
would need to look at a Cayley diagram or multiplication table to tell if fe; x; y; zg is
a subgroup of A4, and not simply a subset. Of course, we have already done so in this

chapter, even verifying that fe; x; y; zg is normal by dividing A4 by it in Figure 7.23. But

in general, combining conjugacy classes does not always create subgroups. What it does

is give us a much shortened list of things to check when seeking normal subgroups.
So class equations provide a shortcut when searching for normal subgroups. Rather

than checking many subgroups for normality by attempting the quotient process in each

case, we only have to check a few. (In this example, we only had to check one.) Although

this connection of conjugacy with normal subgroups is useful, it is not the only value we

will derive from the concept of conjugacy. Some of the exercises in Section7.6.5 reveal

new uses for conjugacy, and each of the remaining chapters in this book depends upon it

as well.

7.6 Exercises

Recall the organization of the chapter stated at its outset: Each section from this chapter

corresponds to a section in the exercises. For example, the exercises in Section 7.6.1

correspond to the material in Section 7.1. Those exercises are therefore only about direct

products and do not cover additional material beyond Section 7.1. This allows you to try

exercises periodically throughout your reading, to boost your command of the material.

7.6.1 Direct products

Exercise 7.1. How many elements are in each of the following groups?

(a) C2 � C6

(b) S3 � A5

(c) C 5
3 , which means C3 � C3 � C3 � C3 � C3

Exercise 7.2.

(a) Consider two Cayley diagrams, one for the group A with two arrow types (indicating

two generators) and one for the group B with just one arrow type. How many arrow

types will be in the Cayley diagram for A � B , constructed by Definition 7.1?
(b) What is the answer if the diagram for A has n arrow types and the diagram for B

has m?

Exercise 7.3. For each of the following statements, determine if it is true or false.

(a) If A and B are any two groups, then jA � Bj D jAj � jBj.
(b) The group C3 � C4 has the same elements as the group C4 � C3.

(c) The group A � B is abelian, for any groups A and B .
(d) The group C2 � C2 has the same structure as the group C4.

(e) If A and B are any two groups, then A C A � B .
(f) The group Dn has the same structure as the group C2 � Cn.
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Exercise 7.4.

(a) Create a Cayley diagram for C4 � C4, which can be called C
2
4 , \cee four squared."

(b) Create a Cayley diagram for C3 �C3 �C3, which can be called C
3
3 , \cee three cubed."

(c) Create a Cayley diagram for C2 � C2 � C2 � C2, which can be called C
4
2 , \cee two

to the fourth."

(d) Are C 2
4 and C

4
2 the same?

Exercise 7.5.

(a) Describe the construction of C5 � C1. To what is it isomorphic?

(b) Describe the construction of C1 � C5. To what is it isomorphic?

(c) What can you say about C1 �G and G � C1 in general?

Exercise 7.6. If jAj D n and jBj D m, then what is jA �Bj?

Exercise 7.7. Although all parts of this question can be answered after only having read

Section 7.1, parts (b) and (c) are easier if you have also read Section 7.3.

(a) Use direct product notation to describe the group depicted by the following Cayley

diagram (shown from two different angles, to clarify its structure).

(b) The group C10 is a direct product. What are its factors?

(c) Is the group depicted by the following Cayley diagram a direct product group? Justify

your answer.

Exercise 7.8.

(a) If A and B are abelian, is A � B?
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(b) Justify your answer to (a) visually. If you answered yes, give evidence by explaining

why the direct product process for two abelian Cayley diagrams must produce an

abelian Cayley diagram. If you answered no, give Cayley diagrams for abelian groups

A and B and the corresponding non-abelian group A � B .

(c) Justify your answer to (a) algebraically (either by reference to the groups' binary

operations or their multiplication tables).

(d) If A is non-abelian, what can you conclude about A � B?

(e) Justify your answer to (d) visually (by reference to Cayley diagrams).

(f) Justify your answer to (d) algebraically (either by reference to the groups' binary

operations or their multiplication tables).

Exercise 7.9. A Cayley diagram for Q4 appears in Exercise 4.4.

(a) Reorganize the diagram to show the subgroup hii and its left cosets. Is hii a normal
subgroup of Q4?

(b) Let's determine whether Q4 is a direct product of hii with some other subgroup
A < Q4. What size must A be?

(c) Based on part (b), what are the possibilities for A?

(d) Is Q4 a direct product hii � A for some A? If so, what is A? If not, why not?

Exercise 7.10. Explain succinctly why A4 is not a direct product hxi � A, hyi � A, or
hzi � A for any group A.

Exercise 7.11. Come up with a way to take any positive whole number n and create a

group whose Cayley diagram requires at least n arrow types.

Exercise 7.12. Prove that A C A� B and B C A �B . You may find the equations on
page 128 useful for an algebraic argument, or Figure 7.14 for a visual one.

Exercise 7.13. Draw a representative portion of the infinite Cayley diagram for the group

Z2.

7.6.2 Semidirect products

Exercise 7.14.

(a) Create and diagram the rewiring group for C5.

(b) Create and diagram the rewiring group for C7.

(c) What conjecture would you make about rewiring groups for Cp , when p is prime?

(d) What is the rewiring group of S3?

Exercise 7.15.

(a) What is the semidirect product of C4 with its rewiring group?
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150 7. Products and quotients

(b) What is the semidirect product of C6 with its rewiring group?

(c) Do you suspect that the semidirect product of C5 with its rewiring group will follow

the pattern suggested by parts (a) and (b)? Why or why not?

(d) Draw a Cayley diagram of the semidirect product of C5 with its rewiring group.

(e) Think about and then describe (without necessarily drawing it) the Cayley diagram

for the semidirect product of C7 with its rewiring group.

Exercise 7.16. What is the rewiring group of Z? Compute the corresponding semidirect

product group.

7.6.3 Quotients

Exercise 7.17. Consider the quotient taken in Figure 7.23.

(a) What is the subgroup by which the quotient is taken? Where in the figure can you

see that subgroup?

(b) What is the order of that subgroup? How does the figure show that order?

(c) What is the index of that same subgroup? How does the figure show that index?

(d) Does A4 have any subgroups of order 3? How does the figure show you such a

subgroup, or show you that there are not any?

(e) Can A4 be divided by any of its other subgroups?

Exercise 7.18. For each of the following H and G (with H < G), attempt the quotient

process from Definition 7.5. If it succeeds, show a diagram like Figure 7.20 and state

the name of the quotient group. If the quotient operation reveals a direct or semidirect

product structure, say which it is and name the factors. If the quotient operation fails,

show a diagram like Figure 7.26.

(a) G D C4, H D h2i

(b) G D V4 with generators named a and b, H D hai

(c) G D C10, H D h2i

(d) G D D4, H D hr2i

(e) G D D4, H D hf i

(f) The group G shown in the Cayley diagram below, with H standing for the two-

element subgroup generated by the green arrow
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(g) The group G shown in the same Cayley diagram (above), but this time with H

standing for the two-element subgroup generated by the blue arrow

(h) The group G shown in the Cayley diagram below (sometimes called G4;4), with H

standing for the two-element subgroup generated by the red arrow

Exercise 7.19. In any group G, the relationships G C G and feg C G are true (where

e stands for the identity element).

(a) What is G
G
?

(b) What is G
feg?

Exercise 7.20.

(a) Develop a quotient procedure for multiplication tables. (Hint: You learned last chapter

how to expose subgroups and their cosets.) Your procedure should succeed just when

the subgroup by which you divide is normal. In that case, the result should be a

multiplication table for the quotient group. Take care with how you name the elements

in that table.

(b) Test your procedure on the following two multiplication tables. The left table is a

multiplication table for S3 organized by the normal subgroup hri. The right table is
the same table, but organized by the non-normal subgroup hf i.

e r r2 f f r2 f r

e

e

r r2 e fr2 f r f

r

r

r2 e r fr f f r2

r2

r2

f f r2 e r2 r

f

f

f r2 f r e r2

f r2

f r2

f r f r2 f r2 r e

fr

f r

f r

fr

e r2f f r2 f r

e

e

r

r2e

fr2

f r

r

r

r2

efr

f r2

r2

r2

ff r2 e r2

r

f

f

f r2f

r

r2

f r2

f r2

f r f r2 fr2

r f r

f r

f r

fr

r

r

e

e

f f

(c) Choose one of the groups from Exercise7.18, create a multiplication table for it, and

apply your technique to one of its subgroups. Was the subgroup normal? If so, what

was the quotient group?

(d) Write your technique down carefully and clearly, using some of your work from this

exercise as examples to illustrate your explanation.
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Exercise 7.21. Explain why every subgroup of an abelian group is normal.

Exercise 7.22. Is every quotient of an abelian group also abelian? Explain why. (Your

answer to Exercise 7.20 may help.)

Exercise 7.23.

(a) Prove that if H < G and ŒG W H� D 2, then H C G.

(b) What will be G
H
in this case? Justify your answer.

(c) What relationship does ŒG W H� have with
ˇ
ˇ G

H

ˇ
ˇ in general?

Exercise 7.24. Recall the group Q (under addition) and the group Q� (under multipli-
cation) introduced in Exercise 4.33.

(a) Describe the quotient group Q
h1i .

(b) Describe the quotient group Q�

h�1i .

7.6.4 Normalizers

Exercise 7.25. Compute the normalizer of H in G for each of the following cases. None

of these requires drawing; all are possible by thinking (and perhaps using your mind's

eye).

(a) G D C9, H D h3i
(b) G is any group and H D G

(c) G is any group and H D feg
(d) G D Dn and H D hri

Exercise 7.26. Illustrate the normalizer of H in G in each of the following cases, as

Figure 7.29 did for hf i < D6.

(a) G D D3, H D hf i
(b) G D D4, H D hf i
(c) G D D4, H D hf; r2i
(d) G D D5, H D hf i

Exercise 7.27. From what you observed as you did Exercise7.26, can you say for which

n the normalizer NDn
.hf i/ is not equal to hf i?

7.6.5 Conjugacy

Exercise 7.28. What is the result of conjugating an element by itself?

Exercise 7.29. Show that all of an element's conjugates have the same order as the

element.

Exercise 7.30. For each group below, an element has been singled out. Describe the

conjugacy class of that element.
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(a) r 2 D3

(b) rk 2 Dn

(c) m 2 Cn

(d) A 90-degree clockwise rotation about one face in the group of symmetries of the cube

(e) A 180-degree clockwise rotation about one face in the group of symmetries of the cube

(f) The permutation interchanging 1 and 2 in Sn (with n � 2)

(g) The following permutation in Sn (for k � n)

1 3 k n2 … …

Exercise 7.31. Compute the class equations for the following groups.

(a) C3

(b) V4

(c) any abelian group of order n

(d) S3

(e) Q4 (as in Exercises 4.4 and 7.9)

(f) D4

Exercise 7.32. Let c and t stand for the permutations shown below, members of Sn.

c = 1 3 n t = 1 3 n… …2 2

Thus c stands for a cycle of n numbers in order, and t stands for the interchange of just

the numbers 1 and 2, leaving the rest alone. This exercise determines what elements the

subgroup hc; ti of Sn contains.

(a) What is the conjugate of t by c, written ctc�1? What is the conjugate of t by ck ,

for any k up to n?

(b) All the conjugates from part (a) are in hc; ti. Describe that set of conjugate elements.

(c) What is the conjugate of t by the following permutation, which interchanges just the

numbers 2 and 3, leaving the rest alone?

1 2 3 4 n…

How could you use two of the elements in hc; ti to create a permutation that swaps
any two numbers from 1 to n, leaving the rest alone?

(d) Describe the set of elements that part (c) shows to be members of hc; ti.

(e) What permutation is obtained by doing t followed by the permutation shown in part

(c)? How could you create any cyclic permutation using just elements of hc; ti?
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(f) All permutations can be broken into a sequence of non-overlapping cyclic permuta-

tions, as in the following example.

1 2 3 4 5 = 1 2 3 4 5 1 2 3 4 5×

How does this help determine the subgroup hc; ti of Sn? What is that subgroup?

Exercise 7.33.

(a) Compute the class equation for the first few dihedral groups Dn with n odd, until

you notice a pattern. State the pattern and give some justification for it.

(b) Compute the class equation for the first few dihedral groups Dn with n even, until

you notice a pattern. State the pattern and give some justification for it.

(c) Class equations can be illustrated by coloring the elements of a group according to

the sets in the conjugacy class partition, a different color for each set. Illustrate the

patterns in each of parts (a) and (b) using colored Cayley diagrams.

(d) Cycle graphs display element order rather clearly. How is this relevant to conjugacy

classes? Use Group Explorer to illustrate the patterns in each of parts (a) and (b)
using cycle graphs.

Exercise 7.34. Which of the following equations could be class equations for a group?

Find all the groups that have that class equation, if there are any. If there are not any,

explain why.

(a) 1C 2 D 3

(b) 1C 1C 1C 1C 1 D 5

(c) 1C 2C 3 D 6

(d) 1C 3C 3 D 7

(e) 1C 3C 4 D 8

Exercise 7.35. How few elements might gHg�1 and H have in common? Find a

minimal example and explain how you know it is minimal.

Exercise 7.36. An equivalence relation is one that can be used to partition a set; equiva-

lence relations have three properties. This exercise asks you to prove that being a conjugate

is an equivalence relation, using algebraic or visual evidence, whichever seems best to

you.

(a) Show that being a conjugate is a reflexive relation: Any g 2 G is conjugate to itself.

(b) Show that being a conjugate is a symmetric relation: If g1 is conjugate to g2 (that is,

there is some h 2 G such that g1 D hg2h
�1), then g2 is also conjugate to g1.

(c) Show that being a conjugate is a transitive relation: If g1 is conjugate to g2, which

is conjugate to g3, then g1 is also conjugate to g3.
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Exercise 7.37. Recall Figure 7.33, which showed that a and c are conjugates in A4.

Show that b and d are conjugates as well, by finding an element of A4 by which to

conjugate. This can be done algebraically (using a Cayley diagram or multiplication table

for A4 as reference) or visually (using Figure 7.32 or an actual tetrahedron for reference).

Try to illustrate the conjugation like Figure 7.33 does.
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8
The power of homomorphisms

Throughout this book I've said things like \this group has the same structure as that group"

or \there is a copy of this group inside that group." The first time I did so (page 19, regard-

ing the equivalence of Figures 2.7 and 2.8), I carefully explained how the two structures

were the same. But since then, when stating that two structures are the same, I've depended

on your ability to see how their patterns match, without my spelling out all the details. The

purpose of this chapter is to create and study precise descriptions of how two structures

correspond, because doing so will significantly advance our study of group theory.

To describe groups with the same structure, in Chapter 3 I introduced the technical

term \isomorphic" without giving a formal definition. The related term \homomorphism"

refers to a correspondence between two groups. The Greek roots \homo" and \morph"

together mean \same shape." Isomorphisms are a specific kind of homomorphism, and

this chapter explores both. Section 8.1 introduces homomorphisms through their relation-

ship with two major topics we've already studied. The rest of the chapter tours four

important ideas in group theory that homomorphisms help us better describe, understand,

and visualize.

8.1 Embeddings and quotient maps
Homomorphisms are hiding in two important contexts we've already studied. It's time to

bring them out of hiding and learn what they can teach us. First, we will find homomor-

phisms whenever one group is a subgroup of another. Second, we will find homomor-

phisms whenever we perform a quotient.

I begin with the case of subgroups. Consider the mathematical statement C3 < S3,

which we first illustrated on the left of Figure 6.3 on page 100. The highlighting in that

figure shows that S3 contains a three-step cyclic subgroup, which is identical to C3 in

structure only. That is, none of the elements of C3 (0, 1, or 2) are actually in S3 at all.

When we say that C3 is a subgroup of S3, we really mean that the structure of C3 shows

up, even if the elements are not 0, 1, and 2.

In Chapter 6, I expected you to visually recognize the structural correspondence in

Figure 6.3 on your own; it is a rather obvious one. But this chapter studies such corre-

157
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0

2 1

f

rfr2f

e

r2 r

Figure 8.1. The diagrams for C3 and S3 side-by-side, to make it clear that the highlighted

pattern in S3 is the pattern of C3, and to make it possible to describe the element-by-element

correspondence

spondences, so let's begin by describing this one precisely. Figure 8.1 shows the Cayley

diagrams of C3 and S3 side-by-side to facilitate the following explanation of the structural

correspondence of C3 to the orbit hri in S3.

The top element 0 2 C3 corresponds to the top element e 2 S3. If we proceed

clockwise, following red arrows in each Cayley diagram, the correspondence continues.

The first step along the red arrow path in C3, to the element 1, corresponds to the first

step along the red arrow path in S3, to the element r . The path continues, making 2 2 C3

correspond to r2 2 S3, and then returning to both starting points simultaneously. The

three-step walk through C3 corresponds to the three-step walk through the r -orbit in S3.

This explanation leaves no doubt about exactly what it means to say that C3 is a

subgroup of S3, but it is far too wordy! It shouldn't take a whole paragraph to precisely

describe such a simple correspondence. Homomorphisms are the mathematical tool for

succinctly expressing precise structural correspondences. The homomorphism represent-

ing the explanation above is illustrated in Figure 8.2. It is depicted by dashed arrows

connecting each C3 element to its corresponding S3 element, and it is also described

in the legend on the right of the figure. The legend writes 0 7! e to say that 0 2 C3

corresponds to e 2 S3, and so on.

Because homomorphisms describe how elements of one group correspond to elements

of another, they are a kind of function. In mathematics, we often graph and study functions,
which connect each value of an independent variable x to one and only one value of a

dependent variable y. The x and y values are usually numbers, but not always; in group

theory, our functions will often not be about numbers. Figure 8.2 specifies a function

0

2

e

f

r2

rf

r

r2f

1

0 a e

1

2

a

a

r

r2

Figure 8.2. A diagram that spells out the correspondence between C3 and the hri orbit in S3 by

showing which element from S3 corresponds to each element in C3 . The correspondence is shown

using dashed lines and described using the legend on the right.
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8.1. Embeddings and quotient maps 159

from the group C3 (a group of numbers) to the group S3 (not containing numbers). We

say that this function maps elements of C3 to elements of S3.

Traditionally, Greek letters stand for maps between groups, so I'll use � for the map in

Figure 8.2. I can use the mathematical notation � W C3 ! S3 to say that � maps C3 to S3.

Just as standard function notation writes f .2/ to mean the number to which f maps 2, in

group theory we can write �.2/. In the case of the homomorphism in Figure 8.2, �.2/ D
r2. And just as it is standard to define a function using notation like f .x/ D x 2 C 1,

I can define � succinctly with the expression �.n/ D rn. This definition works for any

n 2 C3 (if we think of r
0 as e) and it highlights the connection of C3 to the orbit of r .

The group from which a function originates is called its domain (in this case C3),

and the group into which the function maps is called its codomain (in this case S3).

The particular elements of the codomain that the function touches (in this case the orbit

hri) are called the image of the function. The notation Im.�/ means the image of the
homomorphism �.

The original description I gave of � a few paragraphs ago makes it clear that �

carefully mimics the structure of its domain C3 in its codomain S3. Group theory concerns

itself most with functions that have this property, as described in the following definition.

Definition 8.1 (homomorphism).A homomorphism is a function between two groups that
mimics the structure of its domain in its codomain. The following condition expresses this

requirement; I state it in two equivalent ways, both of which are illustrated in Figure 8.3.

(1) In terms of Cayley diagrams: If an arrow b in the domain leads from the element a

to the element c, then the �.b/ arrow in the codomain must lead from the element

�.a/ to the element �.c/.

(2) In terms of multiplication tables: If the domain multiplication table says that a �b D c,

then the codomain multiplication table must say that �.a/ � �.b/ D �.c/.

These statements must hold true for any a, b, and c in the domain. Take a moment

to consider why each of these statements expresses the idea of mimicking the domain

structure in the codomain.

f( )b

b

a

f( )b

f( )a f( )c

Domain Codomain

Cayley
diagrams

Multiplication
tables

c

f( )c

f( )a

b

c

a

Figure 8.3. The criteria in Definition 8.1 illustrated. On the top left is a portion of the domain
Cayley diagram, in which b connects a to c. Therefore somewhere in the codomain Cayley diagram,

�.b/ connects �.a/ to �.c/ (top right). On the bottom left, the domain multiplication table includes

a � b D c, so the codomain multiplication table must include �.a/ � �.b/D �.c/ (bottom right).
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0

12

0

1

2

3

4

5 0 0a

1 2

2 4

a

a

q: C3 ® C6

Figure 8.4. A diagram that spells out the correspondence between C3 and the h2i orbit in C6

by showing which element from C6 corresponds to each element in C3 .

Another example can help us better appreciate this definition. Recall that C3 is also

a subgroup of C6, as shown on the right of Figures 6.4 and 6.5 on page 100. We can

express C3 < C6 using the homomorphism �.n/ D 2n from C3 to C6, as in Figure 8.4.

The next few paragraphs use � as an example to point out some important facts about

homomorphisms in general.

Just as � maps the node 1 to the node 2, it maps the 1-arrow in C3 to the two-step path

representing 2 in C6. The 1 arrow traces the orbit f0; 1; 2g in C3, and the �.1/ path traces

the corresponding orbit f�.0/; �.1/; �.2/g in C6, which is f0; 2; 4g. Thus homomorphisms
not only map nodes of the domain's Cayley diagram to nodes of the codomain's, but also

implicitly map paths in the domain's Cayley diagram to paths in the codomain's. Part
(2) of Definition 8.1 requires that the path from a to b in the domain correspond to the

path from �.a/ to �.b/ in the codomain. The Cayley diagram of C6 in Figure 8.4 does

not include arrows for �.1/, but they could be added. Or we can simply think of the �.1/

arrow as the path consisting of two red arrows in succession. So � doubles both numbers

and arrows. By viewing each pair of successive arrows in C6 as one step that skips the

odd-numbered nodes, we find the structure of C3 in C6.

Thus when using Cayley diagrams to visualize homomorphisms, we can think of the

homomorphism on two levels, mapping nodes in the domain to nodes in the codomain

and also mapping paths in the domain to paths in the codomain. Furthermore, if we know

where a homomorphism maps the domain's arrows, this tells us enough to deduce where

the homomorphism maps every element of the domain. The reason is that the arrows of

a Cayley diagram represent the group's generators. Just as those elements generate the

group, where they are mapped generates the homomorphism. For example, suppose there

were another homomorphism �0 W C3 ! C6 different from the � in Figure 8.4. Given

only that � 0.1/ D 4, it is possible to determine the rest of the homomorphism.

You could proceed using part (2) of Definition 8.1. For instance, it tells us that because

1C1 D 2 in C3, we must require �
0.1/C� 0.1/ D � 0.2/ in C6. Therefore we can determine

� 0.2/ as follows.

� 0.2/ D � 0.1/C � 0.1/ D 4C 4 D 2

Similarly, from 1 C 2 D 0 in C3 we can determine that �
0.0/ must be 0. So all of � 0 is

generated by the fact that � 0.1/ D 4. Try drawing this homomorphism and comparing it

to the homomorphism � shown in Figure 8.4.

Similar steps can be used to generate any homomorphism. Say � W G ! H and assume

thatG D ha; bi and we are given the values of �.a/ and �.b/. We can determine the value
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of �.g/ for any element g 2 G as follows. The element g can be written as some multi-
plied sequence of a's and b's, say g D a � b � a � a � b. Applying part (2) of Definition 8.1
several times yields

�.g/ D �.a/ � �.b/ � �.a/ � �.a/ � �.b/:

We can compute what �.g/ must be by multiplying �.a/ � �.b/ � �.a/ � �.a/ � �.b/ in
the group H . In this way, any homomorphism is generated by what it does to a group's

generators.

That G has two generators is irrelevant; similar reasoning works for three or more.

Exercise 8.7 asks you to explain why this implies that any homomorphism must map the

domain's identity to the codomain's identity. I will use this fact without having given

evidence for it myself.

To understand Definition 8.1 better, it is helpful to contrast the example homomor-

phisms we've seen with examples of correspondences that are not homomorphisms. Figure
8.5 shows four examples of non-homomorphisms, with reasons for why each fails to sat-

isfy Definition 8.1. Two are not homomorphisms because they are not even functions, and

the other two are functions but do not mimic the structure of the domain or the codomain.

Take a moment to understand each example in Figure 8.5.

0

2

0

2

0

2

0

2

0

2

0

2

0

2

0

2

1 1

q1

q2

q3

q4

1 1

1 1

1 1

A function maps element of the domain

to some element of the codomain. But

ignores two elements of the domain, and thus

is not a function.

each

q1

A function maps each element of the domain

to element of the codomain. But maps 0

to two different elements of the domain, and

thus is not a function.

one q2

Although is a function, it is not a homo-

morphism. In the domain, 1 + 1 = 2, but in the

codomain, (1) + (1) (2).

q3

q q q3 3 3¤

Although is a function, it is not a homo-

morphism. Although the image is a 3-cycle
like the domain, does not map the domain

identity element to the codomain identity

element. For example, (0) + (1) (1).

q4

q

q q q

4

4 4 4¤

Figure 8.5. Four example maps that are not homomorphisms, with the corresponding reasons.
For simplicity, I kept the domain and codomain C3 the same in each case, but similar examples

could be created for many domains and codomains.
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0 1 2

1 2 0

2 0 1
e r f

f r2

f r

r e f r

e r f r

f e r

f r e

f r f r e

f: C3 ® S3

f r2

f r2

f r2

f r2 fr

f

f r2

f

fr

r2

r2

r2

r2

r2

r2

0 1 2

1 2 0

2 0 1
0

1 2 3 4 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 1 3

q: C3 ® C6

35 0 1 2 4

2

1 2 3 4 5

Figure 8.6. Multiplication tables representing the same homomorphisms from Figures8.2 and
8.4.

Although I find it most helpful to visualize homomorphisms using Cayley diagrams,

we could use multiplication tables or cycle graphs instead. For example, Figure8.6 shows

the same two homomorphisms as Figures 8.2 and 8.4, but using multiplication tables

instead. Figure 8.7 shows them using cycle graphs.

0

2 e
f rf

r

0

2
0

1

f: C3 ® S n r3 by ( ) =f n

q: C3 ® C n n6 by ( ) = 2q

1

1

2

3

4

5

r2

r2f

Figure 8.7. Cycle graphs representing the same homomorphisms from Figures8.2 and 8.4. The
homomorphism � does not look much different than in Figure 8.4 because the cycle graphs of

cyclic groups are almost the same as their Cayley diagrams.
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8.1.1 Embeddings

I began Section 8.1 by saying that homomorphisms show up in two group theory situations

we've seen before. The first is that homomorphisms help us get specific about how one

group is a subgroup of another group, as in the examples we just saw. We call such

homomorphisms embeddings because they show us how one group can be embedded in
another.

Because any embedding finds a copy of the domain in the codomain, its image is

therefore the same size as its domain. For this reason, embeddings have the interesting

property that they never map two different domain elements to the same codomain element.

If one did, its image would be smaller than its domain, and not a copy of it. This property

is easy to verify in a figure, because it is easy to spot two homomorphism arrows that

have the same destination.

An embedding whose image fills the whole codomain shows us that the domain and

codomain actually have all the same structure. In such a case, we say that the function

is not just a homomorphism, but an isomorphism. Figure 8.8 shows a simple example.
Two groups are isomorphic if there is an isomorphism between them. This is the formal

definition of the term I've been using informally since Chapter 3. Two isomorphic groups

may name their elements differently and may look different based on the layouts of Cayley

diagrams or multiplication tables, but the isomorphism between them guarantees that they

have the same structure. When two groups G and H are isomorphic, we write G Š H ,

read \G is isomorphic to H ."

0

1

2

3 1

i

1

i

Figure 8.8. The domain of this isomorphism is C4 , and the codomain is a group of complex

numbers f1;�1; i;�ig under the operation of multiplication. The isomorphism points out that

despite their different elements and operations, these groups have the same structure.

8.1.2 Quotient maps

Figure 8.9 shows two examples of homomorphisms that are not embeddings. They satisfy

all the requirements from Definition 8.1 for being a homomorphism, but they map more

than one domain element to the same codomain element. In doing so, their image becomes

a smaller, simplified version of their domain. The diagrams in Figure 8.9 are intricate;

take a moment to study them. Verify that they satisfy Definition 8.1, and try to notice

patterns they have in common.

There are several useful patterns to notice that are not unique to these two examples,

but hold for all non-embeddings. I make three observations below about non-embedding
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�1 W Q4 ! V4

e h

v b

i

kj

1

–1 –i

–j –k

�2 W C10 ! C6 by �2.n/ D
(

0 if n is even

3 if n is odd

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

9

Figure 8.9. Two example homomorphisms that do not have the defining characteristic of embed-
dings. Each of these homomorphisms maps more than one domain element to the same codomain

element.

homomorphisms and give reasons to support each. As you read Observations8.2 through

8.4, verify that they are true about the two homomorphisms in Figure 8.9. This can help

you gain some concrete intuition for both the observations and the reasoning behind them.

Observation 8.2. Every collection of domain elements that maps to the same codomain
element has the same structure in the domain.

In other words, every non-embedding homomorphism follows a repeating pattern. For

instance, in the homomorphism �1 in Figure 8.9, each element of the codomain is mapped

to by a little copy of C2 in the domain, two elements connected by a �1 arrow. In the
homomorphism �2, each element in the image (0 and 3) is mapped to by five elements

of the domain connected in a chain by pairs of red arrows. Let's prove that Observation

8.2 is true about any non-embedding.
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Proof. Take two elements a and b in the image of a homomorphism �. Let A stand for

the set of domain elements that � maps to a, and B the elements it maps to b. I will

explain why A and B must have the same structure. It may help to visualize the following

argument with a concrete example. For �, think of �2 from Figure 8.9 and let a D 0 and

b D 3 in its codomain, so that A D f0; 2; 4; 6; 8g and B D f1; 3; 5; 7; 9g in its domain.
The structure of A and B is comprised of the paths within them. Choose two starting

points, a1 in A and b1 in B , as illustrated in Figure 8.10. I explain why every path from

a1 to another element in A also leads from b1 to some other element in B .

Let p be a path from a1 to some point a2 in A. Part (1) of Definition 8.1 tells us that

�.p/ leads from �.a1/ to �.a2/. But �.a1/ D �.a2/ D a, so �.p/ is a path leading from

a to a. It is a path with zero steps (or you can think of it as a path that goes somewhere

but then returns to end at its starting node). So where does the path p lead if we start

from b1? I'll call the point to which it leads b2, and the important question is whether

b2 is in B . Well, �.p/ leads from �.b1/ to �.b2/, making them equal since �.p/ is an

empty path. Thus �.b2/ D �.b1/ D b, which means that b2 is in B , because B is the

set of elements that � maps to b.

This shows that my path from a1 that stays within A has a corresponding path from

b1 that stays within B . Similar reasoning could show that any path from b1 that stays

within B has a corresponding path from a1 that stays within A. Thus A and B have

all structure in common. Because they stood for any two sets in the domain that map to

single elements of the codomain (a and b), this shows that all such sets have the same
structure. Observation 8.2 is true for any non-embedding.

As Figure 8.10 suggests, this creates a partition of the domain into identical copies of

a structure. This is reminiscent of when we partitioned a group by cosets of a subgroup

in Chapter 6. In fact, that is exactly what is happening here as well.

Observation 8.3. The collections of domain elements mentioned in Observation 8.2 are
actually a subgroup and its left cosets.

Domain

Codomain

A

B

a1

a

b

p

p

…

…

a2

b1

b2

f

Figure 8.10. A non-embedding homomorphism � and the sets of elements A and B that it

maps to the elements a and b. This illustrates the reasoning following Observation8.2.
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166 8. The power of homomorphisms

From Chapter 6, we know that the left cosets of any subgroup are structural copies,

and they partition the group. Thus if any one of the identical structures mentioned in

Observation 8.2 is a subgroup, the others must be its left cosets. If one such structure

were to be a subgroup, it would need to be the one containing the identity element, and

therefore it would need to be the one that maps to the codomain identity. I give evidence

for Observation 8.3 by explaining why the structure that maps to the codomain identity

is indeed a subgroup of the domain.

I use the same type of argument that I did for Theorem 7.7. Let C stand for the col-

lection of elements that map to the codomain identity. I show that the subgroup generated

by C is just C . Obviously C generates at least its own elements, but I must show that it

generates no more. For any two elements a and b inC , must their product ab remain in C ?

The element ab is where the b arrow reaches from a, and thus the element �.ab/ is

where the �.b/ arrow reaches from �.a/. But since b is in C , � maps b to the identity

and thus �.b/ is an empty path. So �.a/ D �.ab/, and because � maps a to the identity,

it must map ab there as well. Thus ab is in C .

So the collection of elements that map to the codomain identity is a subgroup of the

domain, and each of its left cosets maps to a different, single element of the codomain.

The subgroup C is called the kernel of the homomorphism �, and we write it Ker.�/.

Observation 8.4. The left cosets mentioned in Observation 8.3 are also right cosets, and
thus the subgroup is normal.

In Chapter 7 we saw that normal subgroups are those with no ambiguous arrows

among their cosets, as illustrated in Figure 7.27. If the arrows for any element g in the

domain were ambiguous, connecting Ker.�/ to both gKer.�/ and kKer.�/ as in Figure
8.11, then part (1) of Definition 8.1 requires that �.g/ in the codomain connect e to both

�.g/ and �.k/. Since we know that the codomain is a group, this cannot happen. The

kernel must therefore be a normal subgroup.

Putting together Observations 8.2 through 8.4 we can see that the homomorphisms in

Figure 8.9 are functioning much like the quotient process from Definition 7.5. The quotient

process collapsed cosets of a normal subgroup into single nodes representing the coset;

the way that a homomorphism maps each coset of its kernel to a single node is another

way of doing the same collapsing. For example, the homomorphism �1 in Figure 8.9

Ker( )f

g g

e

g k

f( )e

f( )g f( )k

f( )g

ambiguous
blue arrows

gKer( )f kKer( )f

f

f

f

f( )g

Figure 8.11. The pattern depicted here never happens because the ambiguity of blue arrows in
the codomain is impossible; the codomain is a group.
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H

jH kH

1

–1

i

–i

j

–j

k

–k

H iH

jH kH

1

–1

i

–i

j

–j

k

–k

Q
H

4 organized by the
subgroup = –1á ñ

left cosets of
are near each other

H collapse cosets
into single nodes

iH

Figure 8.12. The quotient of Q4 by C2 corresponding to the homomorphism �1 in Figure 8.9.

It follows the quotient procedure from Chapter7, as depicted in Figure 7.20 (and others).

collapses copies of C2 in Q4 to single nodes of V4. It corresponds to the quotient of Q4

by the subgroup h�1i, isomorphic to C2. That quotient process is shown in Figure 8.12.

This relationship of homomorphisms to quotients is the subject of Section 8.2, which

begins with a famous theorem stating the connection formally. Because of this relation-

ship, I call non-embedding homomorphisms quotient maps. This is one of the key facts
about homomorphisms: they come in only two types, embeddings and quotient maps. Em-

beddings never collapse two domain elements into one codomain element, and quotient

maps do so in the same way that a quotient process does. You have spent this section

learning about embeddings first and quotient maps second, and there is no other kind of

homomorphism.

8.2 The Fundamental Homomorphism Theorem

The following theorem has an important-sounding name for good reason; it sums up a

lot of what we've already observed about homomorphisms, and more. I begin by simply

stating it, then discuss its implications and its proof.

Theorem 8.5 (Fundamental Homomorphism Theorem). If � W G ! H is a homomor-
phism, then Im.�/ Š G

Ker.�/
.

As we move toward understanding why this theorem is true, let's first see some of

its simplest implications. First, consider what the theorem says about embeddings. Any

embedding � must map only one element to the codomain identity, and so its kernel is

just the trivial subgroup feg. Theorem 8.5 therefore says that Im.�/ is isomorphic to G
feg ,

which is isomorphic to G. Thus the theorem says that embeddings deserve their name,

because their image is a copy of their domain.

When � is not an embedding, somewhere it must collapse two domain elements to

one codomain element. In fact, because quotient maps follow a repeating pattern, every

coset of Ker.�/ will have at least two elements in it. Thus the quotient G
Ker.�/

collapses

cosets with several elements into single elements, resulting in a smaller group (unlike

the quotient G
feg ). So Theorem 8.5 tells us that quotient maps, too, deserve their name,

because they perform a nontrivial quotient process. In fact, after we prove the theorem,

we will use it to see exactly how quotient processes and quotient maps relate.
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Proof. For any homomorphism � W G ! H , we know from Observations 8.2 to 8.4 that

Ker.�/ C G, so we know that we can take a quotient G
Ker.�/

and obtain a group. Now

I must explain why that group is isomorphic to Im.�/, a subgroup of H . We learned
how to compute quotient groups like G

Ker.�/
by collapsing cosets of Ker.�/ in G, and

Observations 8.2 to 8.4 already showed that homomorphisms collapse cosets of Ker.�/;
each maps to a single node in Im.�/.
The question is whether � also collapses arrows in the same way that the quotient

by Ker.�/ does. Let's recall what the quotient process does to arrows between cosets.
If b arrows lead from the coset aKer.�/ to the coset cKer.�/ in G, then when the
quotient collapses cosets to nodes, the b arrows also collapse to one b arrow connecting

the aKer.�/ node to the cKer.�/ node in the quotient group. That is, the quotient process
requires the arrows to connect nodes in the same way after the quotient as before, but

duplicate arrows become one. This is perfectly analogous to what homomorphisms do.

Part (1) of Definition 8.1 requires that whenever an arrow b connects a to c in G, we must

have �.b/ mapping �.a/ to �.c/ in H . Furthermore, because H is a group, there will

be no duplicate arrows between nodes. Any homomorphism � collapses both cosets and

arrows just as does a quotient by Ker.�/, and the results therefore have the same structure.
If G

Ker.�/
and Im.�/ are the same structures, then there must be a suitable renaming, an

isomorphism converting cosets of Ker.�/ to elements of Im.�/. Figure8.13 diagrams this
relationship and calls the isomorphism i W G

Ker.�/
! Im.�/. A specific example following

the pattern of Figure 8.13 is shown in Figure 8.14. The homomorphism � W A4 ! C3 is

the same as the quotient process q that divides A4 by Ker.�/, followed by a renaming of
cosets to numbers using the isomorphism i .

But what is the formula for i? As suggested by Figure 8.14, i must map a coset in
G

Ker.�/
to where � maps all that coset's elements. After all, we want q followed by i

to agree with �. Thus the isomorphism i should map any coset gKer.�/ to the element
�.g/ in H . There is no ambiguity here, because regardless of which element is chosen

to represent the coset, � maps them all to the same destination. This isomorphism i is

what makes G
Ker.�/

isomorphic to Im.�/.

G

group of cosets

any homomorphism

q

quotient process

i

renaming isomorphism

Figure 8.13. The Fundamental Homomorphism Theorem (Theorem 8.5) illustrated
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e

z y

d

ba

c

a2

0

21

e

z y

d

ba

cd2 b2

a2 c2

A4

quotient process

Ker ( )f

x

c2

d 2 b2

aKer ( )fa Ker2 ( )f

f : A C4 3®

i aH a( ) = ( )f

x

C Im3 = ( )f

Figure 8.14. The Fundamental Homomorphism Theorem (Theorem 8.5) exemplified using the
group A4 and the quotient map � whose kernel is the subgroup fe; x; y; zg of A4

We can interpret Theorem 8.5 as saying that any homomorphism can be imitated by

combining a quotient process with a suitable renaming isomorphism. What you may also

suspect from these figures is that the quotient process is itself a homomorphism. It is a

function from a group to a quotient group, and it respects the group operation. For this

reason the quotient processes in Figures 8.13 and 8.14 are named q and diagrammed

like the other homomorphisms in those figures. In fact, the term \quotient map" becomes

rather ambiguous. I've been using it to mean a non-embedding homomorphism, which acts

like a quotient process, as �1 in Figure 8.9 acts like the quotient process in Figure 8.12.

But the quotient process is itself a homomorphism, and thus is also called a quotient map.

We now have a strong foundation for using homomorphisms in our study of group

theory. The rest of this chapter explores a variety of uses for both homomorphisms and

Theorem 8.5. There are many uses, but I choose four of the most significant and famous

ones on which to spend our time, one topic each in Sections 8.3 through 8.6.

8.3 Modular arithmetic

In Section 5.1.2 we learned that the binary operation for the groups Cn is addition mod

n. I introduced this concept by comparing C12 to a clock. A clock and a Cayley diagram

for C12 are numbered almost exactly the same, but where the clock has 12, the Cayley

diagram has 0 instead. This leads to a very useful way to think of the group C12. It is
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the group obtained by taking the group Z of all integers and imposing the requirement

that 12 and 0 should be the same. Theorem 8.5 can help us do this.

Begin with a Cayley diagram for Z (using one arrow for the generator 1), as shown

in Figure 8.15. The recent discussion of Theorem 8.5 tells us that dividing Z by a normal

subgroup containing 12 corresponds to a homomorphism that maps 12 to 0. Both represent

the idea that 0 and 12 should become the same. Let's perform this quotient.

–3 –2 –1 0 321… …

Figure 8.15. The infinite cyclic group Z of integers

To avoid removing too much, let's divide by the smallest normal subgroup of Z

containing 12. Well, the smallest subgroup containing 12 in Z is of course h12i, the
contents of which are exactly the multiples of 12.

h12i D f: : : ;�36;�24;�12; 0; 12; 24; 36; : : :g

Because Z is abelian, all subgroups (including this one) are normal. Thus I now compute
Z

h12i using the visual quotient process from Chapter 7.
First I must organize a Cayley diagram of Z by h12i and its cosets. To do so, we must

know what those cosets are. Because Z is a group whose binary operation is addition

(rather than multiplication, as in many of the groups we've seen), we will indicate cosets

of h12i using the notation k C h12i (rather than kh12i). A few cosets are shown in

Figure 8.16; notice that they are structural copies of h12i, as expected. The coset 1Ch12i
contains all the numbers that are one more than a multiple of 12, that is, those numbers

whose remainder is 1 when the number is divided by 12. The coset 2 C h12i contains
elements that give remainder 2 when divided by 12, and so on.

These cosets are called congruence classes mod 12, and we say two elements are
congruent mod 12 if they're in the same congruence class|they have the same remainder
when divided by 12. When a and b are congruent mod 12, we write a �12 b. Thus, for

–12 –10 –8 –6 –4 –2 0 12

–13 –11 –9 –7 –5 –3 –1 0 1 13

–12 –10 –8 –6 –4 –2 0 2 12 14 16

2 4 6 8 10 14 16

3 5 7 9 11 15

4 6 8 10

á ñ12 = {…, –36, –24, –12, 0, 12, 24, 36, …}

1 + 12 = {…, –35, –23, –11, 1, 13, 25, 37, …}á ñ

2 + 12 = {…, –34, –22, –10, 2, 14, 26, 38, …}á ñ

Figure 8.16. Segments of Z with a few cosets of h12i highlighted. Other cosets follow the

pattern suggested here.
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10 + 12á ñ

–16

–15

–14

–13

–12
–11

–10

–9

–8

–7

–6
–5

–4

–3

–2

–1

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

279 + 12á ñ

11 + 12á ñ

á ñ12

1 + 12á ñ

2 + 12á ñ

3 + 12á ñ

4 + 12á ñ

5 + 12á ñ

6 + 12á ñ

7 + 12á ñ

8 + 12á ñ …

…

Figure 8.17. A Cayley diagram of the group Z organized by cosets of h12i. The quotient group
structure becomes clear; we can see that the cosets form C12.

example, the following congruences are true.

6 �12 18 1 �12 25 12 �12 1200 �12 0

The group Z organized by these cosets forms an infinite spiral, as shown in Figure 8.17.

The coset grouping in this layout shows that Z
h12i Š C12.

But there's more to learn from this example. Figure 8.18 diagrams this quotient after

the pattern of Figures 8.13 and 8.14. The homomorphism � W Z ! C12, the combination

of the quotient and the isomorphism i W Z
h12i ! C12, is a natural and meaningful function.

For any integer k, q.k/ is the coset containing all integers with the same remainder as

k when divided by 12. Then i maps this coset to the element it has in common with C12.

Because � is q followed by i , we know it maps all elements in the coset kC h12i to the
element k 2 C12. Of course, C12 contains just the possible remainders (0 through 11), so

for any integer k, �.k/ is the remainder when k is divided by 12. The homomorphism �

is the natural arithmetic operation of finding a remainder.

This analysis of Z
h12i could have been done for any

Z
hni , not just n D 12. Any Cn is

isomorphic to Z
hni , and the corresponding homomorphism � computes remainders mod n.

Two numbers are congruent mod n (a �n b) if and only if � maps them to the same

element of Cn.
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–16

–15

–14

–13

–12
–11

–10

–9

–8

–7

–6
–5

–4

–3

–2

–1

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

–3 –2 –1 0

0
1

2

3

4

5
6

7

8

9

10

11

q

i

Z

á    ñ12

C12
… …

Z

The homomorphism

gives the remainder when
its input is divided by 12.

f

1 32

f

The quotient map corresponds
to the quotient process described
in the text, whose rearranged
Cayley diagram is shown
here.

q The isomorphism renames
the cosets to the single
nodes of C , showing
that the structures are

identical.

i

12

Figure 8.18. The combination of a quotient map and renaming isomorphism yields the map �.
For any integer k, �.k/ is the remainder when k is divided by 12.

8.4 Direct products and relatively prime numbers

Some cyclic groups can be disguised as direct products and some cannot. Earlier in this

book, I disguised C6 by using arrows for the generators 2 and 3, revealing its alternate

identity, the direct product of C2 and C3. (See Figure 6.5 on page 101 and Section 7.3.)

In contrast, it is not possible to disguise C8 as anything but a cyclic group. You may add

unneeded arrows, or leave off so many arrows that it's not a connected diagram anymore

(and therefore does not clearly show C8), but a valid Cayley diagram for C8 will always

include an order-8 arrow, and thus be recognizably cyclic. Why the difference? Why can
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some Cn be disguised and others not? The answer can be expressed using isomorphisms,

but it depends on the notion of relatively prime numbers.
What it means for two numbers a and b to be relatively prime can be defined in several

ways. The definition most convenient here is based on the numbers into which both a

and b divide evenly, their common multiples. Every two numbers a and b have their
product ab as a common multiple. But they may also have a smaller common multiple;

for example 6 and 15 both divide 30, which is smaller than 6 � 15 D 90.

Definition 8.6 (relatively prime1). Two integers a and b are relatively prime when their
least common multiple is their product ab.

Let's see how this definition applies to Cayley diagrams of cyclic groups and their

direct products. The numbers 3 and 4 are relatively prime, and Figure 8.19 shows a

Cayley diagram for C3 � C4 with the beginning of the orbit of .1; 1/ highlighted. What

order does the element .1; 1/ have? Take a moment to determine the answer by tracing

the rest of the orbit in the Cayley diagram.

(1 0),

(3 2),

(2 0),

(0 2),

(2 1),

(1 2),

(3 1),(0 1),

(3 0),(0,0)

(2 2),

(1 1),

Figure 8.19. Tracing the orbit of .1; 1/ in the group C3 � C4

As you may have noticed while tracing the orbit, each step of .1; 1/ moves to the right

one column, eventually returning from the rightmost column to the leftmost on the fourth

step, and again on the eighth step, and so on. It returns to the first column every fourth

step because of course there are four columns in the diagram. The orbit of .1; 1/ ends

when it comes back to .0; 0/, an element in the first column. Thus the number of steps

in the orbit must be a multiple of 4. A similar fact is true about rows; each step of .1; 1/

moves down one row, returning to the top row every third step. Because .0; 0/ is also in

the first row, the number of steps in the orbit of .1; 1/ must be a multiple of the number

of rows in the diagram, 3. So the order of .1; 1/ is a multiple of both 3 and 4, a common
multiple. Since the least common multiple of 3 and 4 is their product 12, the order of

.1; 1/ must be at least 12. Thus its orbit covers all of C3 �C4, making C3 �C4 a cyclic

1 An equivalent definition can be given in terms of common factors. Any two numbers a and b have 1 as a
common factor, but they may also have a greater common factor. For example, 6 and 15 share the factor 3. You

could define a and b to be relatively prime when their only common factor is 1 (making it also their greatest
common factor). The reason this definition is equivalent to Definition8.6 is a fact of number theory I will not

prove here.
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group generated by .1; 1/. The Cayley diagram in Figure 8.19 could be unwound to a

single, 12-step cycle generated by .1; 1/.

The only assumption about 3 and 4 used in the above reasoning was that they are

relatively prime. You could rewrite the previous paragraph about a Cayley diagram for

Cn � Cm for any two relatively prime numbers n and m, and it would still be true. This

proves one half of the following important theorem, which we will use to answer the

question from the first paragraph of this section.

Theorem 8.7. Cn �Cm Š Cnm if and only if n and m are relatively prime.

The phrase \if and only if" is a common mathematical phrase indicating that the two

halves of the sentence always occur together. That is, if n and m are relatively prime,

then the groups are isomorphic, and if the groups are isomorphic, then n and m must be
relatively prime. I have already explained why one of these two statements is true. The

paragraphs following Definition 8.6 demonstrate that if n and m are relatively prime, then

Cn � Cm is isomorphic to the cyclic group Cnm.

Furthermore, they gave enough information to determine the isomorphism explicitly.

The orbit of .1; 1/ in Cn �Cm is a cycle filling the whole group, and thus both Cn �Cm

and Cnm are cycles containing exactly nm elements. Each element in the cycle Cnm

corresponds to a step in the orbit of .1; 1/ in Cn � Cm by the isomorphism

� W Cnm ! Cn �Cm by �.k/ D step k in the orbit of .1; 1):

I prove the other half of the theorem now.

Proof. If Cn �Cm is cyclic, it must be generated by one of its elements; let's call it .a; b/

because we do not know specifically which a 2 Cn or b 2 Cm it involves. Because the

orbit of .a; b/ includes every element in Cn � Cm, the orbit of a must therefore include

every element in Cn and the orbit of b must include every element in Cm. (If hai did not
include some c 2 A, how would h.a; b/i ever include an element starting with c?) Thus
a generates Cn (and is of order n) and b generates Cm (and is of order m). Figure 8.20

is therefore an acceptable way to organize a Cayley diagram of Cn �Cm, with generators

( )e,e ( )e,b

( )a,b( )a,e

( )e,bm–1

...
...

...
. . .

…

… ( )a,bm–1

(

)

a ,

b

n

m

–1

–1( )a ,en–1 ( )a ,bn–1 …

Figure 8.20. A Cayley diagram for the group Cn � Cm , for some n and m
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.a; e/ and .e; b/ as arrows. The orbit of .a; b/ walks through this diagram much as the

orbit of .1; 1/ walks through the diagram in Figure 8.19.

Let's see why the order of .a; b/ must be the least common multiple of n and m.

The orbit visits column 1 of the diagram after step m, step 2m, step 3m, and so on, all

multiples of m, the number of columns in the diagram. Similarly, the orbit visits row

1 after steps that are multiples of n. Thus it visits the identity element, in both row 1

and column 1, after steps that are multiples of both n and m, any one of their common

multiples. The order of .a; b/ is defined as the first power that returns to the identity
element. So in this case, the order of .a; b/ will be the least common multiple of n and
m. But we know that the orbit of .a; b/ includes all nm elements of Cn � Cm, and so

the least common multiple of n and m is nm, and they are relatively prime.

Theorem 8.7 answers the question of when it is possible to disguise a cyclic group as a

direct product. If a cyclic group has an order that can be factored into two relatively prime

numbers, as 6 D 2 � 3, then it can be diagrammed as a direct product, C6 Š C2 � C3.

By contrast, the number 8 factors only into 2 � 4, two numbers that are not relatively
prime, and thus C8 6Š C2 � C4. Theorem 8.7 has other applications, some of which you

will explore in this chapter's exercises. It can help determine the shapes of certain cycle

graphs (Exercise 8.23) and determine efficient embeddings for Cn in Sm (Exercise 8.27).

It also applies in the following section and the related exercises.

8.5 The Fundamental Theorem of Abelian Groups

Abelian groups have a simple definition: all pairs of elements commute (ab D ba). But

the consequences of this one small requirement are so significant that a statement of its

full implications directs the course of much of the study of group theory! This section

tells us why.

We can get an idea of just how special abelian groups are by looking at Cayley

diagrams for a representative sample of them. Figure 8.21 shows six abelian groups'

Cayley diagrams. It includes two one-dimensional diagrams for one-generator abelian

groups (cyclic ones), two two-dimensional diagrams for two-generator abelian groups, and

two three-dimensional diagrams for three-generator abelian groups. The pattern typifying

abelian groups (the leftmost pattern in Figure 5.8 on page 69) appears throughout each

Cayley diagram in Figure 8.21. It makes all arrows parallel to arrows of the same color

and perpendicular to arrows of other colors. (Those slightly curved arrows in some parts

of Figure 8.21 could be flattened out, but I curved them to improve readability.)

As Figure 8.21 shows, abelian groups' Cayley diagrams are grids. Some are one-

dimensional grids (just a line), some are two-dimensional grids (like graph paper), and

some are three-dimensional grids (one or more boxes). But all have the parallel-and-

perpendicular pattern just mentioned. And most importantly, that pattern is not only in-

dicative of a group's being abelian, but also of a direct product structure. The Funda-
mental Theorem of Abelian Groups states this important connection precisely.

Theorem 8.8 (Fundamental Theorem of Abelian Groups). Every finite abelian group A
is isomorphic to a direct product of cyclic groups. That is, there is some list of integers
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One-generator abelian groups:

0 1 2 0 2 3 41

Two-generator abelian groups:

(0 0), (0 1),

(1 0), (1 1),

(0 2),

(1 2),

(0 3),

(1 3),

(0 0), (0 1),

(2 0),

(1 1),

(0 2),

(1 0),

(2 1),

(1 2),

(2 2),

Three-generator abelian groups:

022

012

122

002

021

112

222

011

102

121

001

020

212

202

111010

221

101

120

000

211110

201

220

100

210

200

Figure 8.21. Cayley diagrams for six abelian groups, two one-generator groups, two two-

generator groups, and two three-generator groups. The one-generator (cyclic) groups are arranged

linearly to emphasize their one-dimensionality. Four- and higher-dimensional groups exist but are

not shown here.

n1; n2; : : : ; nm, such that

A Š Cn1
� Cn2

� � � � � Cnm
:

Although we learned about abelian groups in Chapter 5 and direct products in Chapter

7, we did not encounter isomorphisms until this chapter, and thus were unable to state this

theorem until now. I do not include the proof of Theorem 8.8 here, because it is lengthy.

I guide interested readers through constructing a proof in the exercises in Section 8.7.10.

The important consequence of this theorem for the study of group theory is that abelian

groups are very easy to understand! We understand cyclic groups and direct products very

well, so abelian groups are built from two simple group theoretic concepts. Thus the grid-

like Cayley diagrams in Figure 8.21 give an appropriately clean and organized impression;

all the tangled intricacy possible in groups takes place in the non-abelian ones.
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You could say that groups are like cities. A map of Long Island is very different from

a map of Paris. It's much easier to give directions, to follow directions, and to picture

your location when on Long Island, because all streets are straight, all turns are right

angles, and all blocks are the same size. It's comprehensible in the same way abelian

groups are, and so its map is a grid, just as is the Cayley diagram of an abelian group.

Paris is a much harder city to navigate; the streets curve, connect at varying angles, and

have varying lengths. It is much more difficult to get to know your way around, just as

non-abelian groups require more study.

This is what I meant earlier by saying that the Fundamental Theorem of Abelian

Groups impacts where we direct our efforts; because abelian groups are so well under-

stood, the bulk of the study of group theory is aimed at non-abelian groups. The following

section and Chapter 9 both contain material aimed primarily at better understanding non-

abelian groups.

8.6 Semidirect products revisited

In Chapter 7, I introduced semidirect products by connecting rewirings of Cayley dia-

grams. I confessed that I was only introducing some semidirect products then, and prom-
ised to finish the job later. Now we can use the power of homomorphisms to do just that.

Definition 7.4 specified that a rewiring rearranges a Cayley diagram's arrows but not

its nodes. For this reason, a rewiring that has both its nodes and its arrows labeled carries

a complete record of how the diagram was rewired. Consider, for example, Figure8.22,

a rewiring of V4. You can tell how the green and red arrows originally connected the dia-

gram, because obviously the v arrow (green) must originally have connected e to v, and the

h arrow (red) must originally have connected e to h. Or we could state this in terms of what

the rewiring action did: It moved the h arrows to where v arrows were, and the v arrows

to where d arrows would have been, had they been included in the original diagram.

e h

v d

hh
vv

Figure 8.22. A rewiring of the group V4, with both nodes and arrows labeled to make clear

how the rewiring was done

Stating it this way reveals that the rewiring is a function; it maps each of the group's

generators to one the group's elements. But it is not just any function; the definition of

rewiring (Definition 7.4) requires that it result in no change to the group's multiplication

table. In other words, the group structure after the rewiring must be no different than

before. This is precisely what it takes to be an isomorphism! Every rewiring of a group is

an isomorphism from the group to itself. Although rewirings only show where to map a

Cayley diagram's arrows, those arrows generate the group, and as on page161, knowing
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where to map the generators tells us how to generate the entire homomorphism (or in this

case isomorphism).

Let's build an isomorphism from the rewiring in Figure 8.22. Let � W V4 ! V4 be

generated by �.h/ D v and �.v/ D d . We can generate the following full description of

� using the procedure exemplified on page 161.

�.e/ D e �.h/ D v �.v/ D d �.d/ D h

The standard mathematical term for an isomorphism from an object to itself is automor-
phism. The prefix \auto" means \self."
Chapter 7 told us that the set of rewirings (now called automorphisms) of a group

G is also a group; we write it as Aut.G/. Look back at Figure 7.18, which showed

the rewiring group Aut.V4/. We used Cayley diagrams like that one to create semidirect

product groups by connecting corresponding elements in the rewirings, as in Figure 7.19.

The result was the semidirect product group G Ì Aut.G/. In general, however, there

exist semidirect product groups G Ì H for any group H at all. In Chapter 7 we did not

have the tools to describe how such products can be constructed, but now we do.

The process is similar to that for the direct product, given in Definition 7.1. The direct

product process fills nodes of one factor with copies of the other, then connects corre-

sponding elements. The semidirect product process connects rewirings instead, so we need

a way to fill each element of H with a rewiring of G. That is, we need a map of elements

of H to elements of Aut.G/. An example homomorphism of this type is shown in Figure

8.23; it maps C3 into Aut.V4/, and its image is the outer ring of the automorphism group.

Any homomorphism whose codomain is an automorphism group, as in Figure 8.23,

enables us to form a semidirect product group. The following definition explains the

process completely. Compare it to the direct product process in Definition 7.1 and note

how they are nearly the same. Like Definition 7.1, this definition includes an example,

illustrated in Figure 8.24. Because different homomorphisms lead to different semidirect

0

2

h v d

1

q(1) =

q : C Aut V3 4® ( )

generated by

Figure 8.23. An example homomorphism into an automorphism group
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each node contains

a copy of ( )

h

hq
semidirect product

group

cyclic C3

Figure 8.24. An example for creating the semidirect product V4 Ì� C3, with � defined in

Figure 8.23. The process exemplified here is described in Definition 8.9; it parallels the direct

product construction illustrated in Figures 7.2 and 7.4.

products, we distinguish them using subscripts: G Ì� H means the semidirect product

created using the homomorphism � .

Definition 8.9 (technique for constructing semidirect products using Cayley diagrams).

To create a Cayley diagram of G Ì� H from a Cayley diagram of G and a homomorphism

� W H ! Aut.G/, proceed as follows.

1. Begin with the Cayley diagram for H .

In the example in Figure 8.24, the group H D C3 appears on the left.

2. Inflate each node h in the Cayley diagram of H and place in it a diagram of the

rewiring �.h/.

In the middle of Figure 8.24, each of the three nodes h 2 C3 grew larger to contain a

copy of �.h/, using the � from Figure 8.23.

3. Remove the (inflated) nodes of H while using the arrows of H to connect corre-

sponding nodes from each rewiring, just as in the construction of a direct product

group.

In the example in Figure 8.24, each rewiring has four nodes. Thus the top left nodes

in all the rewirings correspond to one another, and we connect them as a little copy

of C3. We do the same with the top right nodes, then bottom left, then bottom right,

resulting in a complete Cayley diagram for V4 Ì� C3.

As was promised in Chapter 7, we now see exactly how A4 is a semidirect product

of V4 and C3; it is the semidirect product in Figure 8.24. We could therefore label the

elements in V4 Ì� C3 with the names from A4. But in any semidirect product, we also

have the option to name the nodes as pairs, just as in the case of a direct product. Give

the name .g; h/ to the element that was g in the rewiring �.h/.

8.7 Exercises

This chapter opens new avenues of group theory by allowing us to use homomorphisms to

analyze the relationships between groups. Homomorphisms enable us to state significant

group theory facts, such as Theorems 8.5, 8.7 and 8.8, and to understand constructions
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like the semidirect product. The following exercises can strengthen your understanding

and intuition for these topics.

8.7.1 Basics

Exercise 8.1.

(a) In the homomorphism � in Figure 8.2, what is �.2/?

(b) In the homomorphism � in Figure 8.4, what is �.1/?

(c) In the isomorphism in Figure 8.8, the equation 1C 2 D 3 in the domain corresponds

to what equation in the codomain?

(d) In the homomorphism �1 in Figure 8.9, what elements map to b?

(e) In the homomorphism �2 in Figure 8.9, what elements map to 0?

Exercise 8.2. For each statement below, determine whether it is true or false.

(a) For any groups H and G, there is some homomorphism from H to G.

(b) For any groups H and G, there is some embedding of H into G.

(c) Every homomorphism is either an embedding or a quotient map.

(d) Embeddings are those homomorphisms whose kernel is empty.

(e) When A Š B , there is some isomorphism i W A ! B , and therefore there is also an

isomorphism j W B ! A.

8.7.2 Homomorphisms

Exercise 8.3. If � W G ! H maps every element of G to the identity element of H , is

� a homomorphism?

Exercise 8.4. For each part below, list all homomorphisms (both embeddings and quotient

maps) with the given domain and codomain. Does each collection of homomorphisms form

a group, as collections of automorphisms do?

(a) Domain C3 and codomain C2

(b) Domain C2 and codomain C3

(c) Domain and codomain both C4

(d) Domain C2 and codomain V4

(e) Domain and codomain both V4

Exercise 8.5. Consider the function � W Z ! Z by �.n/ D 2n. Justify your answer to

each of the following questions about �.

(a) Is it a homomorphism? If so, is it an embedding or a quotient map?
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(b) Would � be a homomorphism if it were to use a different coefficient than 2? If so,

what numbers could be used in place of 2?

(c) What are Ker.�/ and Im.�/?

Exercise 8.6. Assume there is a homomorphism � W G ! H . Justify your answers to

each of the following questions.

(a) If there is a subgroupK < G, will the set of elements inH to which � maps elements

of K also be a subgroup?

(b) If there is a normal subgroup K C G, will the set of elements in H to which � maps

elements of K also be a normal subgroup?

(c) If there is a subgroup K < H , will the set of elements in G that � maps to elements

of K also be a subgroup?

(d) If there is a normal subgroup K C H , will the set of elements in G that � maps to

elements of K also be a normal subgroup?

Exercise 8.7. Use the concept of generating a homomorphism (page161) to explain why

any homomorphism must map the domain's identity element to the codomain's identity

element.

8.7.3 Embeddings

Exercise 8.8. Is it possible to embed Cn in Z with a homomorphism? Explain your

answer.

Exercise 8.9.

(a) How many embeddings of C4 are there into itself?

(b) How many automorphisms are there of C4?

(c) Is an embedding of any group into itself always an automorphism?

Exercise 8.10. For each part below, describe all the embeddings with the given domain

and codomain. Choose one from each part (if available) to diagram.

(a) Domain C2 and codomain V4

(b) Domain C2 and codomain C3

(c) Domain C2 and codomain C4

(d) Domain C3 and codomain S3

(e) Domain Cn and codomain Z

(f) Domain and codomain both Z
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8.7.4 Quotient maps

Exercise 8.11.

(a) Diagram the quotient Z
h3i similar to the diagram of

Z
h12i in Figure 8.17.

(b) What is the corresponding quotient map from Z to C3?

(c) Can you devise a way to diagram that quotient using a multiplication table instead?

Exercise 8.12. For parts (a) through (c), a group G is given together with a normal

subgroup H . Illustrate not only the quotient map q W G ! G
H
, but also illustrate the

embedding � W H ! G, chained together so that Im.�/ D Ker.q/. Here is an example
for H D C2 and G D C6. Elements of H (as well as elements to which they map) are

highlighted.

1

24

5

0

3

1 + á ñ32 + 3á ñ

á ñ3

1

0

q

H C= 2
G
á ñ3

f

H Im GŠ ( ) = 3 <f á ñ Š C3

(a) H D C3, G D C6

(b) H D C3, G D S3

(c) H D V4, G D A4

Now answer each of the following questions about each of your answers to parts (a)

through (c).

(d) What map � into H would satisfy the equation Im.�/ D Ker.�/? Choose one with
the smallest possible domain.

(e) What map � 0 from G
H
would satisfy the equation Im.q/ D Ker.� 0/? Choose one with

the smallest possible codomain.

(f) Add the two maps � and � 0 to your illustration.

The new chain of four homomorphisms is called a short exact sequence. It is one way to
use homomorphisms to illustrate quotients, and it shows a connection between embeddings

and quotient maps.

Exercise 8.13. For any group G and any number n we can create a homomorphism that

raises every element to the nth power, � W G ! G by �.g/ D gn. (In an additive group

like Z, we would write ng instead of gn. Thus this � is like the function in Exercise 8.5,

but it works for any group G.)



\master" | 2011/10/18 | 17:10 | page 183 | #197
i

i

i

i

i

i

i

i

8.7. Exercises 183

(a) What is the kernel of this homomorphism?

(b) When we compute G
Ker.�/

, do we get a subgroup of G?

(c) Is G
H
always isomorphic to a subgroup of G (for any G and H C G)?

Exercise 8.14. For any groupG consider the homomorphism � W G ! G by �.g/ D g�1.

What are its image and kernel? What more can you say about it?

8.7.5 Abelianization

Section 8.4 showed how to divide Z by hni to make all multiples of n zero. We now
wish to divide a non-abelian group by its \non-abelian parts," to make them zero, leaving

only abelian parts in the resulting quotient. This process is called abelianization, and is
investigated in the exercises in this section.

Exercise 8.15. Figure 5.8 on page 69 shows the pattern in Cayley diagrams distinguishing

abelian and non-abelian groups, the visualization of the equation ab D ba.

(a) Use algebra to show that the equation aba�1b�1 D e is equivalent to the original.

(b) Use algebra to show that it is also equivalent to the equation ab.ba/�1 D e.

(c) Create an illustration of what aba�1b�1 ¤ e looks like in a Cayley diagram.

Based on Exercise 8.15, a group G containing an element ab.ba/�1 that is not the

identity e cannot be abelian. Such elements are called commutators. We wish to form the
commutator subgroup, generated by the set of all commutators. Then we will divide G
by it to eliminate all the elements that keep G from being abelian, and an abelian group

will result.

Exercise 8.16. Explain why the commutator subgroup must be a normal subgroup.

Exercise 8.17. The abelianization of a group G is the quotient of G by its commutator

subgroup.

(a) Compute the abelianization of S3.

(b) Compute the abelianization of A4.

(c) Compute the abelianization of D5. What does it have in common with the abelian-

ization of D3 from part (a)?

(d) The group D2 is isomorphic to V4, which is abelian. What is its abelianization?

(e) Compute the abelianization of the groups D4 and D6.

(f) What general conclusion do you draw about the abelianizations of dihedral groups?

Exercise 8.18. Use the abelianizations in Exercise 8.17 to help you determine whether

an abelianization of a group is the same thing as its largest abelian subgroup.
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8.7.6 Modular arithmetic

Exercise 8.19. Why do Figures 8.16 and 8.17 write cosets of h12i using the notation
k C h12i instead of kh12i?

Exercise 8.20. For each number given below, find the smallest nonnegative integer to

which it is congruent mod 12.

(a) 15

(b) 30

(c) 529

(d) �9
(e) �182

Exercise 8.21. If a �12 b, what can you say about a � b?
Hint: Use Figure 8.16 to help you visualize the situation.

Exercise 8.22. For each of the following statements, determine whether it is true or

false.

1. If a �6 b then a �12 b.

2. If a �6 b then a �3 b.

3. If a �6 b then a �5 b.

4. If a �12 b then a �2 b.

8.7.7 Relatively prime numbers

Exercise 8.23. Let p be prime and consider the group Cp � Cp .

(a) Let .a; b/ be any non-identity element in the group. What is its order? How do you

know?

(b) If .a; b/ and .c; d / are both elements of Cp � Cp and neither one is in the orbit of

the other, then do their orbits overlap at all?

(c) How many different orbits are there in Cp �Cp?

(d) What does a cycle graph of Cp � Cp look like?

Exercise 8.24. Use Theorem 8.7 to prove that if n and m are relatively prime, then

there must be a multiple of n that is just one greater than a multiple of m (that is,

am D bmC 1).

Exercise 8.25. Section 8.4 showed that Cn can be disguised as a direct product if and

only if n can be factored into two relatively prime numbers. Many numbers n have this

property, but none of them are prime.

(a) Make a list of the first 10 numbers besides primes which cannot be factored into two

relatively prime numbers.

(b) What do these numbers have in common?
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Exercise 8.26. Apply Theorem 8.7 to the following questions.

(a) Write C100 as a cross product of two cyclic groups.

(b) Write C308 as a cross product of three cyclic groups.

(c) Is there more than one way to answer either of parts (a) or (b)?

(d) If n is a positive whole number with prime factorization p
e1

1 � pe2

2 � � � � � pen
n (for

primes pi and exponents ei ), then write Cn as a cross product of n cyclic groups.

(e) Is there more than one way to answer part (d)?

Exercise 8.27. Exercise 5.44 asked you to find, for various cyclic groups Cn, the smallest

Sm into which Cn can be embedded. How can Theorem8.7 be used to confirm your earlier

results, and suggest the general pattern for any n and m?

8.7.8 Semidirect products

Exercise 8.28. The semidirect product in Figure 8.24 uses an embedding homomorphism;

let's try a semidirect product using a quotient map. Consider the homomorphism � 0 W
C4 ! Aut.C4/ shown below. It can be used to create a semidirect product group C4 Ì� 0

C4 in which each rewiring of C4 appears twice. Construct a Cayley diagram for that

semidirect product group.

0

1

2

3

0

1

2

3

0

1

2

3

Exercise 8.29. Recall that Exercise 7.14 had you diagram several rewiring groups, which

we now call automorphism groups, including Aut.C5/, Aut.C7/, and Aut.S3/.

(a) Find an embedding � W C2 ! Aut.C5/ and diagram the semidirect product C2 Ì� C5.

What is a more common name for this group?

(b) Repeat part (a) for C7. Make a general conjecture from these two semidirect products.

(c) How many embeddings are there of C3 into Aut.S3/? Create a diagram of the semidi-

rect product group C3 Ì� S3 for one such embedding � .

(d) If n and m are positive whole numbers and n is even, consider � W Cn ! Aut.Cm/

defined as follows. Even numbers map to the automorphism that changes nothing (all
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elements and arrows correspond to themselves, the non-rewiring). Odd numbers map

to the automorphism that reverses the Cm arrows.

Draw one such Cn Ì� Cm, and describe them in general. Where have we seen one

before?

Exercise 8.30. Specify � for the semidirect product of C4 with C3 shown below.

(0 0),

(0 1),

(0 2),

(0 3),

(1 2),

(1 3),

(1 0),

(1 1),

(2 0),

(2 1),

(2 2),

(2 3),

Exercise 8.31. What homomorphisms are there from C3 to Aut.V4/ besides the one in

Figure 8.23? What semidirect products do they generate?

Exercise 8.32. An inner automorphism � W G ! G is one that conjugates every element

of G by some particular element of G chosen in advance. That is, from any element

g 2 G, we can create an inner automorphism � defined by �.x/ D gxg�1. Obviously

there are different inner automorphisms for different g, though sometimes several different

g's result in the same � .

(a) If G is abelian, what inner automorphisms does it have?

(b) Fill in the following table for S3 so that the entry in row a and column b contains

not ab (as multiplication tables do) but rather bab�1, the conjugate of a by b. The

result is a conjugation table.

e

e

r

r

r2 f

f

rf

rf

r2

r f2

r f2

(c) What significance do the rows in the above table have?
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(d) What significance do the columns in the above table have?

(e) What are all the inner automorphisms of S3?

Exercise 8.33. Let � W H ! Aut.G/ be the map that sends every h 2 H to the identity

element of Aut.G/, the non-rewiring (as in Exercise 8.3). What is G Ì� H?

Exercise 8.34. Definition 8.9 required the function � from H to Aut.G/ to be a

homomorphism. This turns out to be necessary; not just any function from H to Aut.G/

will work. Find two groups G and H and a function f W H ! Aut.G/ that is not a

homomorphism, and apply Definition 8.9 to them. Why is the resulting diagram not a

Cayley diagram? What necessary property of Cayley diagrams does it fail to possess?

Exercise 8.35. Definition 8.9 defines the semidirect product process for Cayley diagrams.

Come up with the semidirect product process for multiplication tables.

8.7.9 Isomorphisms

Exercise 8.36. Prove that A �B Š B � A. Give the formula for the isomorphism.

Exercise 8.37. Which of the following equations is true for anyG andH? If the equation

is true, describe the isomorphism map. If the equation is false, find a particular G and

H that make it false and explain why.

(a) G�H
H

Š G

(b) G�H
G

Š H

(c)
GÌ� H

H
Š G

(d)
GÌ� H

G
Š H

Exercise 8.38. Which of the following equations is true for any G and H? If the

statement is true, describe the isomorphism map. If the statement is false, find a particular

G and H that make it false and explain why.

(a) If H C G then G
H

�H Š G.

(b) If H C G then G
H

Ì� H Š G for any � W G
H

! Aut.H/.

(c) If H C G then G
H

Ì� H Š G for some � W G
H

! Aut.H/.

Exercise 8.39.

(a) Explain why Q4 is not isomorphic to any member of any of the families of groups

we met in Chapter 5.

(b) Explain why the C4 Ì� C3 from Exercise 8.30 is not isomorphic to any member of

any of the families of groups we met in Chapter 5.

Exercise 8.40. Recall the group Q (under addition) and the group Q� (under multiplica-
tion) introduced in Exercise 4.33. Show thatQ�C2 Š Q� by specifying the isomorphism,
and explaining why the function you give is indeed an isomorphism.
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Exercise 8.41. The group Un contains the numbers between 1 and n that are relatively

prime to n, with the operation of multiplication mod n. So, for example, U8 D f1; 3; 5; 7g,
and has the following multiplication table.

1 3 5 7

1

1

3 1 7 5

3

3

5 7 1 3

5

5

7 5 3 1

7

7

Notice that 1 � 3 D 3 as you would expect, but for instance 5 � 7 ¤ 35, because we work

mod 8, and the remainder of 35� 8 is 3.

(a) To what more familiar group is U8 isomorphic?

(b) What are the orders of the groups Un for n � 10?

(c) What is the relationship between U5 and U10?

(d) Examine Up for the first few primes p. What conjecture do you make about Up for

any prime?

(e) All the groups Un belong in which of the families of groups we met in Chapter 5?

The family of groups Un has several interesting properties. For instance, every finite

abelian group is isomorphic to a subgroup of some Un. More information on U -groups

can be found in [18].

Exercise 8.42. This exercise assumes knowledge of matrix multiplication. If that topic

is new to you or if you would like a refresher, refer to the hint for this problem in the

Appendix.

For each part below, consider the group generated by the two matrices shown, using

matrix multiplication as the binary operator. To what common group is it isomorphic?

What is the isomorphism?

(a)
"

0 �1
�1 0

# "

0 1

1 0

#

(b) The constant i stands for the complex number
p

�1.
"

0 �1
�1 0

# "

0 i

i 0

#

(c)
2

6
6
4

0 1 0

1 0 0

0 0 1

3

7
7
5

2

6
6
4

1 0 0

0 0 1

0 1 0

3

7
7
5
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Exercise 8.43. If a group G has two subgroups H and K, we write HK to mean the

set of elements obtained by multiplying any h 2 H by any k 2 K, as in hk. In other

words, combine all the elements of all the left cosets hK for any h 2 H ; this is the same
as combining all the right cosets Hk for all the k 2 K.
This problem deals with the special case when H and K are both normal subgroups.

Consider the homomorphism � W H � K ! G by �.h; k/ D hk, which takes pairs of

elements from H �K and multiplies them in G. Notice that Im.�/ D HK.

(a) If H and K intersect only at the identity element, explain why � is an isomorphism

(and thus H �K Š HK).

(b) Is the reverse also true? That is, if H �K Š HK, must H and K only overlap at e?

8.7.10 Finite Abelian Groups

Exercise 8.44. For each order given below, list all abelian groups of that order. Use the

Fundamental Theorem of Abelian Groups (Theorem 8.8) to obtain your answers. (If you

need some help getting started, refer to the Appendix, where the solutions to parts (a) and

(d) appear.)

(a) 4

(b) 8

(c) 10

(d) 30

(e) 81

(f) 200

In the following chapter, we will learn to list all groups of a given order (if the order
is relatively small).

The remaining exercises in this section ask you to complete a proof of the Fundamental

Theorem of Finite Abelian Groups, following an outline developed elsewhere [14, 20].

Some hints are available in the Appendix.

Any composite number can be factored, and then its factors can be factored, and so

on, until only prime numbers are left. This is called a prime factorization. Here is an
example.

600 D 30 � 20 D 2 � 15 � 2 � 10 D 2 � 3 � 5 � 2 � 2 � 5

If we write the primes in increasing order and combine duplicates using exponents, we

can write 600 D 23 � 3 � 52.

The proof of Theorem 8.8 begins by breaking up an abelian group in a similar way.

For example, if A is an abelian group of order 600, we can find groups G2, G3, and G5

so that A Š G2 � G3 � G5 and jG2j D 23, jG3j D 3, and jG5j D 52. The following

exercise asks you to prove that we can separate any abelian group into a direct product

of factors whose orders are the powers of primes in the prime factorization of the group's

order.
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Exercise 8.45. Let A be any abelian group, and let p be a prime number that divides

the order of A. Make the following definitions.

Gp D the set of all g 2 A whose orders are powers of p (including p0 D 1)

S D the set of all g 2 A whose orders do not have p as a factor

(a) Show that Gp and S are both subgroups of A.

(b) What elements do Gp and S have in common? Justify your answer.

Exercise 8.43 defined multiplication of two subgroups. Let's show that GpS is actually

the whole group A; take any g 2 A and we will show that it is in GpS .

Let pk be the highest power of p that divides jgj. Then jgj D pkm for some number

m into which p does not divide, making pk and m relatively prime. From Exercise 8.24,

we take the equation apk D bmC 1, and we can then write the equation gapk D gbmC1.

(c) How does this equation help show that g 2 GpS?

(d) Therefore what is the relationship between A, Gp, and S? Why?

(e) Explain how repeating steps (a) through (d) for other values of p achieves the desired

result. (You may assume that Gp ¤ feg; this is guaranteed to be true by Theorem 9.6
of Chapter 9.)

The previous exercise showed that any abelian group A can be factored into groups

whose orders are powers of primes. Thus if we can prove Theorem8.8 just about abelian

groups whose orders are powers of primes, we can then apply it to the factors of A and

the entire result is proven. Exercise 8.47 accomplishes this, and the argument it uses

depends upon Exercise 8.46.

Exercise 8.46. This exercise shows that the following fact holds for all abelian groups

G whose order is a power of a prime p: If G has only one subgroup of order p, then G

is cyclic. (We already know that if G is cyclic, then it has only one subgroup of order p;

that was Exercise 6.8. Now we're working in the other direction.)

Assume we have an abelian group G whose order is a power of p, and H is its only

subgroup of order p. If jGj D p, then we know that G is cyclic from Exercise 6.12.

Since that is the easy case, assume jGj > p.
(a) Let � W G ! G be the homomorphism that raises all elements to the p power, as in

Exercise 8.13. Show that if Im.�/ is a cyclic group, then G must be a cyclic group.

Even if the group Im.�/ < G is not a cyclic group, it is still an abelian group whose

order is a power of p, like G. Therefore set up a sequence of homomorphisms as follows.

Let �1 W G ! G be the homomorphism � from part (a), �1.g/ D gp .

Let �2 W Im.�1/ ! Im.�1/ also be defined by �2.g/ D gp .

Let �3 W Im.�2/ ! Im.�2/ also be defined by �3.g/ D gp , and so on for �4, etc.

(b) For which of the images Im.�n/ is H < Im.�n/?

(c) How many subgroups can Im.�n/ have of order p?

(d) Illustrate the chain of connected homomorphisms �1, �2, �3, and so on. How does

the chain end, and what are the last few groups before the end?
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(e) Put together the facts from parts (a) through (d) to prove the goal stated at the

beginning of this exercise.

Exercise 8.47. This exercise shows that you can factor an abelian group G whose order

is a power of a prime p into a direct product C �H for some cyclic subgroup C of G

and another subgroup H of G. The process for finding C and factoring it out can then be

reapplied to H to factor out another cycle, and so on, until G is shown to be a product

of cycles.

Take any element in G with the highest order (or tied for it) and let C be the cyclic

subgroup generated by that element. If C D G, then G is cyclic, and so we don't have

to do any work to factor it into cycles. Thus the interesting case is when G is not cyclic.

(a) When G is not cyclic, what does Exercise 8.46 tell us?

(b) Because C is cyclic, how many subgroups of order p does it have?

(c) Use the previous two parts to explain why there is a subgroup K < G of order p

that is not a subgroup of C . How many elements do C and K have in common?

(d) What does Exercise 8.43 say about C and K? (Keep in mind that both are normal

in G because it is abelian.)

We can take a quotient G
K
because G is abelian; let q W G ! G

K
be the quotient map.

(e) To what does q map the subgroup CK < G? To what is that subgroup isomorphic?

(f) Explain why G
K
contains a cycle of the same size as C .

As in the previous exercise, let's build a chain of homomorphisms; I'll use G1, C1,

K1, and q1 to refer to G, C , K, and q, as the start of the sequence. Let G2 stand for
G1

K1

and let C2 stand for the cycle of the same size as C1 in G2. Exercise 7.22 and Exercise

7.23 part (c) guarantee that
G1

K1
is an abelian group whose order is a power of p. We can

therefore find a subgroup K2 < G2 that is not a subgroup of C2, and take a quotient
G2

K2

with the map q2, just as in part (c).

This process could continue with G3 D G2

K2
and so on. Yet of course the orders of

these groups are decreasing, jG1j > jG2j > jG3j.

(g) Where will this process lead? That is, when does it stop, and what is the final Gn?

(h) As in Exercise 8.46, work backwards from the last group Gn to show that at every

step, Gi is isomorphic to a product Ci �Hi for some subgroup Hi of Gi .

Hint: Hn D Kn. What are Hn�1, Hn�2, and so on?

Exercise 8.48. Summarize the argument in the past three exercises. That is, explain

(without the details) how to factor any abelian group A into a product of cyclic groups,

and why the combination of Exercises 8.45 through 8.47 proves that it is possible.

Exercise 8.49. The exercises in this section have proven something stronger than The-

orem 8.8, which put no requirements on what the subscripts n1 through nm had to be

like. Yet our proof guarantees something special about those subscripts. What can you

say about n1 through nm, based on Exercise 8.45?
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192 8. The power of homomorphisms

Exercise 8.50. If an infinite abelian group G is generated by g1; : : : ; gn, only some of

which have finite order, then how might we write G as a cross product of cyclic groups?

(The proof of this infinite version of Theorem 8.8 is lengthier than the proof built

from Exercises 8.45 through 8.47. I do not ask you to prove your answer to this question,

but rather make a reasonable conjecture about an infinite version of the theorem.)
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9
Sylow theory

This chapter is about one question: What groups are there? In Chapter 5, we met a variety

of groups, to gain a breadth of exposure to the subject. But it was just a sample, not a

comprehensive list. We have since seen groups outside the five families of that chapter.

Seeing a list of all groups would surely benefit our knowledge of (and intuition for) group

theory. This chapter begins to make such a list.

Of course, there are infinitely many groups, so we cannot list them all! But we can

start with the smallest ones and grow our list to include larger ones. For starters, we can

ask what groups there are of order 1. (There's just one, C1.) What groups are there of

order 2? If we answer that question, and then move on to order 3, then 4, and so on, we

build up a reference library of all groups up to a certain size. To answer such questions,

we need a method for finding all the groups of a given order.

Exercise 8.44 is a simplified version of this problem, asking you to find all abelian

groups of a given order. The Fundamental Theorem of Abelian Groups (Theorem 8.8) is

a powerful tool for answering that exercise. But the complexity of group theory lies in the

non-abelian groups, so to find all groups of a given order, we need stronger tools. Those
tools are the Sylow Theorems, and although they do not give us a foolproof method for

finding all groups of a given order, they guide our search by telling us what structures

such groups must contain. From just a group's order, they can answer questions like these.

1. How big are its subgroups?

2. How are those subgroups related?

3. How many subgroups are there?

4. Are any of them normal?

The Sylow Theorems do not always fully answer each of these questions, but their power

comes from the fact that they can give answers based only on a group's order. This

chapter proves the three Sylow Theorems and uses them to find all groups of order 10 or

less and some orders beyond 10. In this way the chapter begins to answer the question

\What groups are there?"

193
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194 9. Sylow theory

The Sylow Theorems also answer another question, one that's been lingering since

Section 6.5, about Lagrange's Theorem. That theorem tells us that if G has a subgroup

of order n, then n must be a factor of jGj. I asked whether this statement would still be
true if we turned it around: If n is a factor of jGj, then must G have a subgroup of order
n? This is called the converse of Lagrange's Theorem, and we saw that it is not true; just
because Lagrange's Theorem permits a subgroup of a certain size does not guarantee that

such a subgroup will exist. Sylow Theory digs deeper, finding which sizes of subgroups

are guaranteed to exist.

The common thread among this chapter's theorems is that they determine group struc-

ture based on group order. I illustrate this common thread by applying each theorem to

an unknown group A of order 200. I make no assumptions about A except that it has

order 200; it could be an abelian group such as C200, a non-abelian group such as D100,

or a group we've never heard of. To illustrate how little we've assumed about A, Figure

9.1 contains a diagram with almost no content. The group A contains an identity e, but

the scattered question marks indicate that we don't know anything about the other 199

elements of A. (Yet.)

In fact, there are several different groups of order 200, and we don't even know which

one A is. The theorems in this chapter tell us what structures all groups of order 200 have

in common, and we can conclude that A contains those structures. As we meet each new

theorem in the chapter, I use it to update the illustration in Figure 9.1, removing question

marks and replacing them with new information. To preview how Figure 9.1 will evolve,

you can look ahead to Figures 9.6, 9.13, 9.18, and 9.20.

| | = 200A

e ?

?

?
?

?

?

?

?

?
?

?

? ?

?

?

Figure 9.1. If we assume only that a group A has order 200, we do not yet know anything about
its internal structure. This chapter teaches several theorems that will reveal much of that structure.

9.1 Group actions

I prepare us for the theorems of this chapter by expanding our understanding of groups

as collections of actions. In Chapter 3 we saw many applications of groups as collections

of actions, beginning with the rectangle puzzle. We studied groups that permute dancers,

coins, and other objects. In Chapter 10 we will learn how studying groups that rearrange

polynomial roots made mathematical history.

It is no coincidence that applications of group theory often mention permutations

(rearrangements). We proved at the end of Chapter 4 a tight connection between the two
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9.1. Group actions 195

concepts: Every group is isomorphic to a subgroup of a group of permutations. Using the

language of homomorphisms, we say that every group can be embedded into some Sn.

Because of this connection, given any group of actions, we should be able to find

a set of things it permutes. Sometimes such a set is obvious, as in the example of the

dancers; their dancing rearranged them, and it was therefore the dancers themselves being

permuted. In other examples, such as the rectangle puzzle, what's being permuted is less

obvious. In fact, in the rectangle puzzle, we have two different ways to look at it, both of

which are valid. The symmetry-measuring technique in Definition 3.1 suggests viewing

the actions as permuting the numbered corners of the rectangle, which they do. However,

I prefer an alternative that connects more closely to Cayley diagrams, like the Cayley

diagram of the rectangle puzzle in Figure 2.7 on page 18. If we view the actions as

permuting the configurations of the rectangle, then each arrow type in the Cayley diagram

in Figure 2.7 clearly shows how its group element permutes the configurations.

Our knowledge of homomorphisms enables us to turn this principle into a mathemat-

ical definition. In the following definition, I write Perm.S/ to indicate the group of all
possible permutations of the elements of a set S . (So the group structure of Perm.S/ is
the same as Sn, for n D jS j.)
Definition 9.1 (group acting on a set). A group G acts on a set S if there is a homo-
morphism � W G ! Perm.S/.

Think of � as a way to interpret every g 2 G as doing something to the elements

of S (rearranging them). That is, �.g/ is the action that g takes on the elements of S .
The definition requires that � be a homomorphism (not just a function) because we want

to interpret a combination of group elements as a combination of actions. That is, the

interpretation of ab should be two actions in succession, the action for a and then the

action for b. This requirement can be expressed as the equation �.ab/ D �.a/�.b/,

which is the defining characteristic of homomorphisms.

Let's see some example group actions, beginning with the familiar rectangle puzzle.

If S is the set of four configurations from Figure 2.7, then the arrows show how the

actions permute those configurations, and we can formalize that action to fit Definition

9.1 as follows. The group V4 D hh; vi acts on S by the interpretation homomorphism
� W V4 ! Perm.S/ with the following definition.

�.h/ D the permutation swapping each configuration with its horizontal flip

�.v/ D the permutation swapping each configuration with its vertical flip

It is just as easy to rewrite any Cayley diagram of a group of symmetries to show

that it fits Definition 9.1. Thus we can see the technique of Definition 3.1 as leading

(indirectly) to a group G and an interpretation homomorphism � W G ! Perm.S/, with
S being the set of configurations of the object. But the technique does not give just any

G and �; its symmetry-measuring ability came from the following two desirable traits.

1. The image of � is exactly those permutations corresponding to actions possible by

hand (guaranteed by part (2) of Definition 3.1).1

1 Imposing different restrictions in part (2) of Definition 3.1 would create group actions whose homomorphisms

have different images. For example, some definitions of symmetry include any manipulation that alters neither

distances nor angles, including some manipulations not possible by hand. (One such manipulation is turning

the object into its mirror reflection.)
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196 9. Sylow theory

2. The homomorphism � is an embedding, so thatG is isomorphic to that image. (Because

we create � from the Cayley diagram drawn in part (3) of Definition 3.1.)

Thus the technique from Definition 3.1 constructs a very specific kind of group action,

one that corresponds to the object's three-dimensional symmetries. Of course, other groups

may act on the object's configurations in ways that have nothing to do with symmetry.

Thus our first example of group actions, while familiar, was a special case. To get a

broader idea of what group actions can be like, we need to see some different examples.

Let S still stand for the configurations of the rectangle, and define � W V4 ! Perm.S/
by

�.h/ D the permutation swapping each configuration with its horizontal flip,

and �.v/ D the identity permutation:

This homomorphism violates both conditions given above that � satisfies, because it was

not designed to measure or reflect the rectangle's symmetry. It will therefore result in a

different kind of group action than � did. Figure 9.2 diagrams that group action.

1 2

3 4

12

34

1 2

3

1

34

h

v

v

v

v

4

h

2

Figure 9.2. The group V4 acts on the configurations of the rectangle puzzle by the homomorphism

� defined in the text. That homomorphism assigns v to the identity permutation (no action), so the

v arrows in this diagram do not alter the rectangle at all.

It is not a Cayley diagram for two reasons. First, there are not enough arrows to

connect all the configurations to one another. Second, although a group must have only

one identity element, the non-identity element v is drawn as if it were the same as the

identity element e. I call diagrams of group actions (like Figure 9.2) action diagrams.
Some action diagrams are Cayley diagrams (Figure 2.7) and some are not (Figure 9.2).

Like Cayley diagrams, action diagrams include arrows only for generators.

Because action diagrams are not Cayley diagrams, they have some new structures that

we have not seen before. The following two definitions give names to two such structures

that are important for the rest of this chapter.
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9.1. Group actions 197

Definition 9.2 (orbit). When a group G acts on a set S , the orbit of any s in S is the
set of elements of S that G arrows can reach from s. I write it as Orb.s/.

For example, in Figure 9.2, the orbit of the original rectangle configuration (top left) is

the pair of configurations in the top row of the figure. The only other orbit in the figure is

the pair of configurations in the bottom row; each orbit has just two elements. In contrast,

in Figure 2.7, the orbit of any one configuration is the entire set of four configurations.

Obviously two different orbits are totally unconnected by an action diagram's arrows.

(If they were connected, they would be just one orbit, not two.) This makes orbits easy

to spot in an action diagram, and means that the orbits partition S . Orbits arise when

there aren't enough arrows to connect the whole diagram, as in Figure 9.2. The redundant

arrows in that same figure (the v arrows, which act like e arrows) give rise to the following

complementary notion.

Definition 9.3 (stabilizer, stable). The stabilizer of an element s in S is the set of group
elements g that don't move s. I write it as Stab.s/. A configuration s in S is called stable
if no actions move s (that is, Stab.s/ is all of G).

For example, the stabilizer of any configuration in Figure 9.2 is fe; vg. Neither e nor
v arrows lead from any configuration to a different configuration. But in Figure 2.7, the
stabilizer of any configuration of the rectangle is just feg. Notice that while orbits are
collections of elements of S , stabilizers are collections of elements of G. Exercise 9.17

will ask you to explain why any stabilizer is a group (and therefore a subgroup of G).

We have not yet seen an example with any stable elements; the following example fills

that gap. In this example, S3 acts on its own subgroups, which is good preparation for the

rest of the chapter, because Sylow theory is built on using groups to act on group-theoretic

objects like subgroups and cosets. Let S stand for all the subgroups of S3.

S D
n

feg; hri; hf i; hrf i; hr2f i
o

The homomorphism � W S3 ! Perm.S/ will have S3 act on S as follows.

�.g/ D the permutation that moves each subgroup H to the subgroup gHg�1

For such an action, we say that S3 acts on S \by conjugation." Figure 9.3 shows the

corresponding action diagram and each permutation in the image of the homomorphism.2

I adopt the convention of putting stable elements on the left of an action diagram and

larger orbits on the right. This action diagram is not a Cayley diagram, but for a different

reason than Figure 9.2; it is not regular, and therefore lacks the uniform symmetry of a

Cayley diagram.

Now that we have seen examples of both orbits and stabilizers, let's see how they

relate. The larger Orb.s/ is, the more group elements move s around, and the smaller

2 Beware of a common misinterpretation of Figure9.3: If, from a subgroup H of g , we follow two arrows
in succession, say r then f , we have conjugated first by r and then by f .

H
first conjugate by r
����������! rHr�1

then conjugate by f
�����������! f rHr�1f �1

The result of conjugating by r and then f is not the same as conjugating by the element rf , as we might expect.

Rather, it is the same as conjugating by f r . This reversal is an unavoidable consequence of the definition of
conjugacy.
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á ñf

á ñrf ár2f ñ

{ }e

á ñr

rr

r

f

� W S3 ! Perm.S/, where S D
n

feg; hri; hf i; hrf i; hr2f i
o

t( )e = { }e

t( )r =

t( )r2 =

t( )f =

t( )rf =

t(r2f ) =

{ }e

{ }e

{ }e

{ }e

{ }e

á ñr

á ñr

á ñr

á ñr

á ñr

á ñr

á ñf

á ñf

á ñf

á ñf

á ñf

á ñf

á ñr f

á ñr f

á ñr f

á ñr f

á ñr f

á ñr f

á ñr f2

á ñr f2

á ñr f2

á ñr f2

á ñr f2

á ñr f2

Figure 9.3. The group S3 acts on its own subgroups by conjugation. Each element in S3 maps

to a permutation of S , as shown. Note that none of the permutations move feg or hri, and those
two elements are stable.

Stab.s/ must be. Conversely, the larger Stab.s/ is, the fewer elements there are that move
s, and so the smaller Orb.s/ must be. Although this give-and-take relationship makes
sense as just stated, it is not very specific; the following theorem makes it precise.

Theorem 9.4 (Orbit-Stabilizer Theorem). The size of an element's orbit times the size
of its stabilizer is the size of the group.

jOrb.s/j � jStab.s/j D jGj

This indeed makes the statements from the previous paragraph precise; for a given orbit

size, the Orbit-Stabilizer Theorem immediately determines the size of the same element's

stabilizer (and vice versa). AlthoughOrb.s/ is not a group, I still use the notation jOrb.s/j
to mean the number of elements in it. I will continue to use this notation for the size

of any set. Before reading the following proof, consider using Figure 9.3 to find Orb.s/
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9.2. Approaching Sylow: Cauchy’s Theorem 199

and Stab.s/ for each s 2 S . It should help your intuition for the theorem, and make the
following proof more concrete.

Proof. Because Stab.s/ is a subgroup of G, the definition of subgroup index (Definition
6.9) tells us that

jStab.S/j
„ ƒ‚ …

size of subgroup

� ŒG W Stab.s/�
„ ƒ‚ …

number of cosets

D jGj :

I prove that the number of elements in Orb.s/ equals the number of cosets of Stab.s/,
so that I can substitute jOrb.s/j for ŒG W Stab.s/� in the above equation to prove the
theorem. I show that each left coset of Stab.s/ pairs up with some element of Orb.s/ in
a one-to-one relationship, and thus the two sets must be the same size.

First, let's see that the elements of any left coset gStab.s/ all move s to the same
place, so that no coset corresponds to more than one element of Orb.s/. Consider two
elements of gStab.s/, say gh1 and gh2. If � is the interpretation homomorphism, then

�.gh1/ D �.g/�.h1 / and �.gh2/ D �.g/�.h2 /:

But h1 and h2 are in Stab.s/, so neither �.h1/ nor �.h2/ moves s. Thus we can rewrite

the above equations as

�.gh1/ D �.g/ and �.gh2/ D �.g/:

Both gh1 and gh2 have the same effect on s, as would any other element of gStab.s/.
Next, let's see that elements of different left cosets correspond to different operations

on s, so that no element of Orb.s/ corresponds to more than one coset of Stab.s/. Consider
two different cosets gStab.s/ and kStab.s/; I show that they affect s differently. In a
Cayley diagram of G, any arrow h from gStab.s/ to kStab.s/ corresponds to the action
that changes the results of the gStab.s/ action into the results of the kStab.s/ action.
Thus if gStab.s/ and kStab.s/ have the same effect on s, then h should do nothing to s
at all. But the h arrow begins in one copy of Stab.s/ and ends in another, and thus h is
not in the subgroup Stab.s/. It does move s, and so gStab.s/ and kStab.s/ have different
effects on s.

The previous two paragraphs establish a one-to-one relationship between the left cosets

of Stab.s/ and the elements of Orb.s/. Thus the two sets have the same size, and we can
substitute jOrb.s/j for ŒG W Stab.s/� in the first equation in this proof so that the desired
relationship holds.

jOrb.s/j � jStab.s/j D jGj

9.2 Approaching Sylow: Cauchy’s Theorem

Theorem 9.4 is a key insight into group actions that will be used to prove many of

this chapter's theorems. The first, Cauchy's theorem, gives us a small, partial converse

to Lagrange's Theorem, by guaranteeing the existence of subgroups of prime order. In

Section 9.4, the Sylow Theorems will build on Cauchy's Theorem and extend it. Cauchy's

Theorem uses the following short theorem, built on the Orbit-Stabilizer Theorem.
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stable elements

p elts p elts p elts

p elts p elts

non-stable elements in orbits of size p

The number of non-stable elements is a multiple of .p

Figure 9.4. A group of prime order p acts on the elements of S . Therefore elements of S are
either stable or part of an orbit of size p.

Theorem 9.5. If a group G of prime order p acts on a set S , then the order of S and
the number of stable elements in S are congruent mod p.

Recall that what it means for two elements to be congruent mod p is that the distance

between them on the number line is a multiple of p, so that they are in the same congruence

class. We first pictured congruence classes this way in Figure 8.16.

By now it should come as no surprise that I find this theorem far easier to understand

and to prove if I draw a picture of it. The following short proof is based on Figure 9.4,

which shows what action diagrams for groups of prime order look like.

Proof. The Orbit-Stabilizer Theorem tells us that the size of each Orb.s/ is a factor of
jGj, so when jGj is a prime p, all orbits have size 1 or p. The stable elements are in
orbits of size 1 (each by itself) and the rest of S is partitioned into orbits of size p. The

number of non-stable elements in S is therefore a multiple of p, as in Figure 9.4.

Consider the following straightforward equation.

number of stable elements in S C number of non-stable elements in S
„ ƒ‚ …

This is a multiple of p.

D size of S

Another way to read this equation is that the distance (on the number line) between the

number of stable elements in S and the size of S is a multiple of p, and so they must be

in the same congruence class mod p.

Theorem 9.6 (Cauchy's Theorem). If p is a prime number that divides jGj, then G has
an element g of order p, and therefore a subgroup hgi of order p.

Proof. Because p is prime, if I find some g ¤ e satisfying gp D e, then g must have

order p. Exercise 9.15 asks you to explain why this is so, but for now I use the fact

without justification.

In most groups there are lots of ways to multiply p group elements together and result

in the identity element e, but usually only a small minority of them are powers, like the

gp we're looking for. The equation ep D e is part of that minority and is true in any

group, but we seek a g other than the identity.
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r2 · r   e = e· f   r fr e=· · fr   r = e· · fr2 fr2 · r   f = e·

fr2 · · fr = er2

fr2 · f = e· r2

fr2 · e = e· fr2

fr fr2 · · r = e

r fr2 2· · f = e

r2 · fr = e· fr2

f   fr· ·2 r = e

f   fr   r· · 2 = e

f   f   e e=· · fr   f   r e=· ·

fr   fr   e e=· ·

r f   fr2 = e· ·

r2 · ·r r = e2 2 f · ·r fr = e2 2

fr · ·fr r = e2 2

fr = e· · fr2

Table 9.1. All equations a � b � c D e for any a; b; c 2 S3

For example, consider the case when G D S3 and p D 3. Table 9.1 lists all products

of three S3 elements that yield e. Direct your attention to the left-hand sides of these

equations, the 36 expressions in the set

fe � e � e; e � r � r2; e � r2 � r; : : : ; f r2 � f r2 � eg:

In this example and for any G and p in general, I call this set of expressions S , and the

set of powers in it (like ep) I call P .

This proof focuses on S and P , and so it will be helpful to know how many elements

are in those sets. Let's deal with S first. In the example of G D S3 and p D 3, there are

obviously 36 equations in Table 9.1. Let's see why that total comes to 36, and discern the

general pattern from there. To create one of the equations in Table 9.1, you can choose

any of the six S3 elements to be the first in the equation and any of those same six

elements to follow it, but then the final element of the equation's left side is constrained

to be the one element that makes that left side equal e. If we call the first two elements a

and b, then the third must be nothing other than .ab/�1. In Table 9.1, these two choices

(of a and b) correspond to each of the six columns and six rows, respectively, giving 36

equations in all.

If p were larger, creating an element of S could be done by a similar (but longer)

sequence of choices. For p D 5, you could choose elements a, b, c, and d , but then the

fifth element must be .abcd/�1 to make the equation a � b � c � d � .abcd/�1 D e true.

For any size p, choose the first p � 1 elements from G any way at all, but then the last

element must be the inverse of their product. Thus creating an element of S involves

jGj choices for each of the first p � 1 elements but no choice at all for the last element,
giving the following equation for the size of S .

jS j D jGj � jGj � � � � � jGj
„ ƒ‚ …

p � 1 times

D jGjp�1

Out of this total of jGjp�1
expressions, the ones I care about are those in P , those

elements g satisfying the equation gp D e. In the example of G D S3 and p D 3, Table

9.1 shows that P contains three elements. But how many does it contain in general, for

any G and p? It is impossible to get a precise answer from how little we know of G, but

I do not need a precise answer. I need to prove only that jP j > 1, so that there is some

g 2 P besides e. Strategic use of Theorem 9.5 can tell us something about jP j. That



\master" | 2011/10/18 | 17:10 | page 202 | #216
i

i

i

i

i

i

i

i

202 9. Sylow theory

stable elements

( )e,e, e

( )e, r, r2

( )f, e, f( )f, f, e

( )r, r, r

( )r, fr, f

( )f, r, fr( )fr, f, r

(r, fr , fr2 )

(r ,2 r , r2 2)

The number of non-stable elements is a multiple of 3.

non-stable elements in orbits of size 3

( )f, fe,

( )fr, fre,

( )fr, e, fr( )fr, fr, e

( )e, rr ,2

( )er, r ,2 ( )e, rr ,2 ( rfr , fr,2 ) ( r, ffr, r2)

(e, fr , fr2 2)

( efr , fr ,2 2 ) ( e,fr , fr2 2)
( fr , f, r2 )

( ff, r, r2) ( ff, r , r2 )( )er , r,2 ( )e,r, r2

(r, f, fr2)

( rf, fr ,2 ) ( r, ffr ,2 )
( fr , fr, r2 2)

( fr, fr , r2 2) ( fr , r , fr2 2 )

(r , fr , f2 2 )

( fr , f, r2 2) ( ff, r , r2 2)

Figure 9.5. The group C3 acts on the set of triples of elements of S3 that multiply to e, as

in the proof of Cauchy's Theorem (Theorem 9.6). Arrows represent the action �.1/, which cycles

each triple to the right one step.

theorem deals with group actions and their stable elements, so the strategy is to devise a

group action whose stable elements are the members of P .

Let the cyclic group Cp act on S with the interpretation homomorphism � W Cp !
Perm.S/ defined by

�.n/ D the permutation that cycles the elements in an expression to the right n steps:

For example, the action �.1/ sends the expression e � r � r2 to the expression r2 � e � r .
The action �.2/ would cycle the expression f r � r2 � f to the right two steps, giving

r2 � f � f r . Figure 9.5 shows the action diagram in the case where G D S3 and p D 3.

In Exercise 9.16, I ask you to prove that each �.n/ will be a permutation of S , as I have

claimed above.

I set up this action intending that its stable elements should be just the members of

P . We can see that this is the case, because those expressions that �.1/ does not change

are those in which each element is the same as the next, making them all equal. Thus

the stable elements are just those in P . And because Cp is a group of prime order, we

can apply Theorem 9.5 to give us some information about jP j. Theorem 9.5 gives us the
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equation jS j �p jP j. But jS j D jGjp�1, and jGj is a multiple of p, making jS j and jP j
multiples of p as well. Although we do not know exactly what jP j is, we now know that
it is in the set f0; p; 2p; 3p; : : :g.
But it cannot be zero, because ep is in P . So there must be at least p elements in

P , which means at least 2 (the smallest prime). Thus there is at least one other equation

gp D e besides ep D e, which gives us the element g of order p that we have been

seeking.

After every important theorem in this chapter, we will take the theorem for a test drive

to see what it can do. I have selected two applications of Cauchy's Theorem to show

us its power. First, recall the unknown group A of order 200 from Figure 9.1; Cauchy's

Theorem gives us some new information to add to the diagram. The number 200 factors

into 23 �52, so the only primes dividing 200 are 2 and 5. Cauchy's Theorem therefore says

that A contains elements a and b of orders 2 and 5 respectively, as shown in Figure 9.6.

|A| = 200

ea

|a| = 2

|b| = 5b

b2

b3

b4

?

?

?

?

?

?

?

??

?

Figure 9.6. An unknown group A of order 200, with subgroups marked whose existence Theorem
9.6 guarantees

The elements a and b (and thus the subgroups hai and hbi) exist regardless of what
group A is; Cauchy's Theorem requires only that 2 and 5 divide the group's order. I

still include many question marks in the picture, because we only know about two small

subgroups of this very large group! We do not yet know whether there are more subgroups

of the same sizes as hai and hbi, or whether there are any larger subgroups. But Cauchy's
Theorem did tell us some information, and in fact the kind of information it gives us can

be even more significant when we apply the theorem to smaller groups. The following

section does so, and is our second example application of Cauchy's Theorem.

9.2.1 Classification of groups of order 6

If you did Exercise 4.21 part (c), then you know that there are only two different groups

of order 4. That exercise depends on earlier ones in which you must painstakingly create

all possible four-by-four multiplication tables. In those exercises, the elements are named

0, 1, 2, and 3 because the names are unimportant; it is the structure of the group we care
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about. The result of these exercises is that any group of order 4 is isomorphic to either

V4 or C4 by a suitable renaming isomorphism.

We say that those exercises \classified groups of order 4 up to isomorphism." Such

work answers the question, \What groups are there with four elements?" The exhaus-

tive, multiplication-table approach to classification becomes unworkably tedious for even

slightly larger groups. The results of this chapter, starting with Cauchy's Theorem, give us

a better way to find out how many groups there are of a given order, and what those groups

are. For small group orders like 6, Cauchy's Theorem is sufficient, as this section shows.

For larger orders we will need stronger tools, which is where the Sylow Theorems come in.

We already know that there are at least two groups of order 6, C6 and S3 (also known

as D3); we will see that there are actually none but these two. I begin by using Cauchy's

Theorem to deduce some essential facts about any group of order 6. Then to find all

groups of order 6, we start exploring using Cayley diagrams that fit those facts. Thus

Cauchy's Theorem gives us a head start on our search, and keeps us from searching down

some dead-end streets.

The head start Cauchy's Theorem gives us is that in any group of order 6, there must

be an element of order 2 and an element of order 3, because those are the two primes

that divide 6. Call those elements a and b, respectively. Therefore we can start drawing

a Cayley diagram for any group of order 6 by drawing a subgroup hai of order 2, like
the top diagram in Figure 9.7. From the identity element in the Cayley diagram, one can

also follow b arrows, which must create an orbit of size 3. Such an orbit contains only

elements of order 3, and thus it does not contain a (which has order 2). So we can safely

extend our diagram to the one on the lower left of Figure 9.7.

The subgroup hbi must have a left coset ahbi, a copy of hbi that does not touch
hbi and contains a. That coset therefore contains two new group elements, as shown in
the lower right image in Figure 9.7. See how much our diagram has grown just from

the seeds Cauchy's Theorem provided! Any Cayley diagram for a group of order 6 must
contain the pattern on the lower right of Figure 9.7. Our search for groups of order 6 is

therefore quickly drawing to an end; we have a nearly complete Cayley diagram already.

One choice remains: How will the a arrows connect the lower four nodes in this

partial diagram? Or more simply, where does an a arrow lead from b? There are only

e a

e

b

b2

a e

b

b2 ab2

a

ab

Figure 9.7. Three steps in the creation of any Cayley diagram for a group of order 6
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three other nodes that need an a arrow entering them, b2, ab, and ab2. Each of these

choices can be expressed as an equation involving a and b. For example, an a arrow

connecting b to b2 implies the equation ba D b2. Cancelling b from the left of each side

yields a D b, which we know is not true, so the a arrow from b does not lead to b2. I

consider the remaining two options separately in the following two paragraphs.

If the a arrow from b leads to ab, then ba D ab. This equation determines all

remaining connections in the diagram. The visual reason for this is that Cayley diagrams

must be regular, and so the path ab must equal the path ba throughout the diagram.

We could state the same idea algebraically, by multiplying the equation ba D ab by

various elements on the left, to see where a arrows lead from other nodes. For example,

multiplying by b yields b2a D bab, telling us where the a arrow leads from b2. Either

the visual or algebraic view can be used to complete the diagram, resulting in the diagram

on the left of Figure 9.8. The group is C2 � C3, or simply C6.

e

b

ab2

e

b

a

ab

a

ab

ab2b2b2

Figure 9.8. Two isomorphism classes of groups of order 6

If the a arrow from b leads to ab2, the equation ba D ab2 results. As in the previous

case, either visual or algebraic means could use this equation to determine all other

connections in the diagram. The Cayley diagram on the right of Figure9.8 results, showing

the group S3.

We have therefore classified groups of order 6. There are only two of them up to

isomorphism; we could also say that there are two \isomorphism classes" of groups

of order 6. This classification tells us not to waste our time imagining any groups of

order 6 besides these two. Trying to contemplate a group of order 6 all of whose non-

identity elements have order 3 is nonsensical, as is imagining a group with class equation

1 C 1 C 2C 2 D 6. Our classification shows that the laws of group theory forbid such

objects, and permit only the two in Figure 9.8.

9.3 p-groups

Cauchy's Theorem is a partial converse to Lagrange's Theorem, \partial" because it

guarantees the existence of a subgroup only if its order is prime. As we just saw, in small

groups this can be very helpful because the subgroups of prime order make up a large

portion of the group. But in large groups (like our order-200 example), knowing whether

there are larger subgroups would be more helpful. The Sylow Theorems include a more

general converse to Lagrange's Theorem, using p-groups.
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Definition 9.7 (p-group, p-subgroup). A p-group is a group whose order is a power of
a prime p. A p-group that is a subgroup of G is called, for short, a p-subgroup of G.

For example, D4 is a 2-group, because its order is 8, a power of the prime 2. It

contains a subgroup isomorphic to C4, which is therefore a 2-subgroup of D4 because its

order is 22. Similarly, C1 and C13 are both 13-groups, because their orders are powers of

the prime 13 (specifically, 130 and 131). We finish preparing for the Sylow Theorems by

applying what we know of group actions to p-groups in the following two short results.

Theorem 9.8. If a p-group G acts on a set S , then the order of S and the number of
stable elements in S are congruent mod p.

This theorem is nearly identical to Theorem 9.5. The only change is that the assump-

tion jGj D p has become jGj D pn, making it more general.

Proof. As in the proof of Theorem 9.5, the size of each orbit must divide the order of
G. In this case, only powers of p divide jGj, so the orbits are therefore of various sizes
including 1, p, p2, p3, up to at most pn. So simply modify the illustration for Theorem

9.5 (in Figure 9.4) so that the orbits are any of these various sizes, all powers of p. The

rest of the proof is then the same as for Theorem 9.5.

The following theorem is a bit dense with notation, but the subsequent paragraphs

clarify what it's saying.

Theorem 9.9. If H is a p-subgroup of G, then ŒNG.H/ W H� �p ŒG W H�.
Recall that ŒG W H� is the number of left cosets of H in G. Thus the theorem says

that whether we count only those cosets in the normalizer NG.H/ or all the cosets in G,

the result is the same mod p. Another way to state this is that the difference (the number

of cosets outside NG.H/) is a multiple of p.

This theorem is here because the First Sylow Theorem depends on it. But secondarily,

its proof reiterates a valuable proof strategy from Cauchy's Theorem that we will encounter

several times in this chapter. One way to learn how many elements are in a set is to devise

an action of a p-group whose stable elements are just those we wish to count. Then

Theorem 9.5 or Theorem 9.8 can count those elements mod p. In the proof of Cauchy's

Theorem the stable elements were the set P of powers gp ; a similar strategy is used here.

Proof. Let S be the left cosets of H in G and consider the group H acting on S by the

interpretation homomorphism � W G ! Perm.S/ defined by

�.h/ D the permutation that sends a coset gH to the coset hgH .

Exercise 9.19 asks you to prove that each such �.h/ is indeed a permutation. In such

a situation, we say that G acts on S \by left multiplication." This action was chosen

because of the strategy mentioned above; I can prove that its stable elements are just

those left cosets in the normalizer, as shown in Figure 9.9.

Recall that the left cosets of H in NG.H/ are those left cosets that are also right

cosets. Figure 9.10 illustrates and explains why they are also those cosets stabilized by

the above group action. The explanations in that figure are an important part of this proof.

Since the stable elements are those cosets inNG.H/, the number of them is ŒNG.H/ W H�.



\master" | 2011/10/18 | 17:10 | page 207 | #221
i

i

i

i

i

i

i

i

9.3. p-groups 207

H

S H= the set of left cosets of in G

N HG ( )

a H2

a H1

a H3

g H4

g H6 g H5

g H2g H3

g H1

g H14

g H13

g H12 g H11

g H10

g H7

g H8

g H9

g H15

Stable elements are just
those cosets in N HG ( ).

Orbits of non-stable elements are of various
sizes dividing | |, but all are outsideH N HG ( ).

Figure 9.9. When H acts on its left cosets by left multiplication (as in the proof of Theorem

9.8) the stable elements are exactly those elements in its normalizer NG.H/.

H

H gH

e

e

g

g

g

g

h1

g

g

g

g

g

g

h2

h3

h1g

h3g

h2g

h1

h2

h3

h1g

h3g

h2g

h2gH

If the left coset is also the
right coset then arrows
between left cosets of are
unanimous, as shown.

gH
Hg g

H

Therefore as the illustration

shows, for any , is
also the left coset .

h H  hgH
gH

2

If the left coset is different
from the right coset then
arrows from must point to at
least two different left cosets,
as shown here.

gH
Hg g

H

Therefore as the illustration
shows, there must be some

for which is a
different left coset than .
h H hgH

gH
2

gH Hg=

Figure 9.10. Those cosets gH stable under left multiplication by H are just those that are both

left and right cosets, gH D Hg.
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The final step of the strategy is to apply Theorem 9.8, which tells us that the number

of stable elements must be congruent mod p to jS j, which in this case is the number of
left cosets of H , ŒG W H�. Writing this as an equation yields the statement of the theorem,

ŒNG.H/ W H� �p ŒG W H� :

If you wish to pause and gain a better understanding of this theorem, I encourage you

to try Exercise 9.10 now, which asks you to illustrate the group action used in the proof,

for a specific group G and subgroup H .

9.4 Sylow Theorems

The Sylow Theorems give us the following three kinds of information about the p-

subgroups of any group. I state them imprecisely here, just to give some intuition for

what is to come.

Existence: In every group, p-subgroups of all possible sizes are guaranteed to exist.

Relationship: A group's p-subgroups have ties to one another through conjugacy.

Number: There are restrictions on how many p-subgroups a group can have.

This section proves the three Sylow Theorems and shows some of their applications,

including extending our knowledge of the order-200 group A.

9.4.1 The First Sylow Theorem: Existence of p-subgroups

Theorem 9.10 (First Sylow Theorem). If G is a group and pn is the highest power of p
dividing jGj, then there are subgroups of G of every order 1, p, p2, p3, up to pn. Also,
every p-subgroup with fewer than pn elements is inside one of the larger p-subgroups.

The First Sylow Theorem generalizes Cauchy's Theorem in several ways, summarized

in Table 9.2. Its proof deals with both statements in the theorem at once by using Cauchy's

Theorem to expand smaller p-subgroups to create larger ones. The First Sylow Theorem

also tells us a bit about the relationship among p-subgroups, but we will learn more about

that relationship from the Second Sylow Theorem.

Proof. It is easy to find a p-subgroup of order 1 (which is p0) because it is obviously

feg. We also know that there is a p-subgroup of order p (which is p1) from Cauchy's

Cauchy's Theorem (Theorem 9.6) First Sylow Theorem (Theorem 9.10)

If p divides jGj, If pi divides jGj,
then there is a subgroup of order p. then there is a subgroup of order pi .

It is cyclic and has no subgroups. Each has subgroups of orders 1, p, p2, up to pi .

There is also an element of order p. There is not necessarily an element of order pi .

Table 9.2. A comparison of the subgroup existence statements in Theorem 9.6 to those in

Theorem 9.10. Most of Theorem 9.10's statements are stronger.
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G

H¢

H

|H | p|H| p¢ = = i+1

expand
of order
to a larger

<

containing

H
p

H G

H

i

¢

Figure 9.11. Theorem 9.10 gives a procedure for taking a subgroup of order pi and finding a
larger subgroup whose order is piC1 (as long as piC1 divides jGj).

Theorem (as long as jGj > 1). The main job of this proof is showing the existence of

the larger subgroups, by explaining how to take any H < G of any order pi < pn and

expand it to create a new subgroup H0 < G that contains H and is p times as large, as

shown in Figure 9.11. We can then repeatedly expand the smallest p-subgroups, creating

larger ones up to size pn.

We can find the H 0 we seek inside the normalizer NG.H/ by relying on the fact that

HCNG.H/. Figure 9.12 illustrates the groups, subgroups, and homomorphism that come

into play in the rest of this proof; refer to it to help visualize the following argument.

Create the quotient group
NG.H /

H
and call the quotient map q. The size of the quotient

group is the number of cosets of H in its normalizer, ŒNG.H/ W H�, which Theorem 9.9

H

aH

a H3

H¢

H

á ñaH

H

aH

q

q–1

g H1

N HG( )

N HG( )

a H2
a H2a H3

. . .

g H2

g H3

g H4

g1

g2

g3

g4

. . .

Figure 9.12. The quotient map and its inverse used in Theorem 9.10 to create a subgroup H 0

whose order is p times that of H
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says must be congruent to ŒG W H� mod p. So what do we know about ŒG W H�? We're
given that the order of G is some multiple of pn, say pnm. So the number of cosets of

H is

ŒG W H� D jGj
jH j D pnm

pi
D pn�im:

Because pi < pn, we know that pn�i > 1 and so p divides pn�im. Therefore ŒG W H�
and ŒNG.H/ W H� are both multiples of p.
The order of

NG .H /
H

is obviously not 0, so it must be a positive multiple of p. This

lets us use Cauchy's theorem to find an element of order p in the quotient group; call

that element aH . The cyclic subgroup haH i will be very useful to us.
The collection of elements that q maps to haH i obviously contains H , but as Figure

9.12 suggests it is also a subgroup of NG.H/, by Exercise 8.6 part (c). It is the subgroup

H 0 that we seek; it contains H and has size piC1 for the following reason. There are p

elements in haH i, and therefore p cosets of H in H 0 . Since H contains pi elements,

each of its cosets does as well, and H0 contains p of them, for a total of piC1 elements.

The preceding paragraphs give a way to expand any H of order pi < pn into a larger

H 0 of order piC1. Beginning with H D feg, we can repeatedly expand it to create H0,
H 00, and so on of orders p, p2, up to pn.

The expansion technique in this proof is an example of conjugacy. It applies q to H ,

applies Cauchy's theorem in the quotient group to turn one element into p elements, and

applies q�1 to bring those p elements back into G as p cosets forming a subgroup H0.
Even though q�1 isn't really a function, this is a useful way to summarize the argument.

Let's see how much more power this theorem has than Cauchy's Theorem. First, let's

return to the group A from Figure 9.6, of which we assumed only that its order is 200.

Cauchy's Theorem told us that there must therefore be two subgroups of orders 2 and

5, but the First Sylow Theorem tells us much more. Those small, prime-order subgroups

are inside groups of orders 4 and 25 respectively, and the subgroup of order 4 is in one

of order 8. These larger, nested subgroups are shown in Figure 9.13.

|A| = 200

ea

|a| = 2

|b| = 5b

b2

b3

b4

?

?

?

?

??

25

4
8

Figure 9.13. The arbitrary group A of order 200, some of whose details we discerned in Figure
9.6, here augmented with new information based on Theorem9.10.
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We also know that there are no subgroups of order 24 D 16, nor 53 D 125, because

those numbers do not divide 200. But we do not yet know how many subgroups there are

of orders 2, 4, 8, 5, and 25. We know there is at least one of each of these sizes, but we do

not yet know whether there are more. Hence, some questions marks remain in Figure9.6.

9.4.2 Classification of groups of order 8

Cauchy's Theorem helped us classify groups of order 6, because the subgroups it gave

us were a significant portion of the whole group. Because larger numbers may not factor

so helpfully, the First Sylow Theorem becomes valuable in classifying groups of those

orders.

Table 9.3 lists every group of order 1 through 7, and the reason justifying each

of the seven classifications. Four of the seven classifications are based on Exercise6.12,

regarding groups of prime order necessarily being cyclic. Let's extend that table to groups

of order 8. From Exercise 8.44 part (b) you know that there are three abelian groups of

order 8, C2 � C2 � C2, C2 � C4, and C8. The First Sylow Theorem helps simplify the

search for non-abelian groups of order 8, and together these results add another row to

Table 9.3.

Order Groups Reason

1 only one group, feg The one element must be the identity.

2 only one group, C2 See Exercise 6.12.

3 only one group, C3 See Exercise 6.12.

4 two groups, C4 and V4 See Exercise 4.21 part (c).

5 only one group, C5 See Exercise 6.12.

6 two groups, C6 and S3 See Section 9.2.1.

7 only one group, C7 See Exercise 6.12.

Table 9.3. Classification of groups of orders 1 through 7.

The First Sylow Theorem says that in any group of order 8, there will be at least one

subgroup of order 4 (something Cauchy's Theorem could not tell us). From Table 9.3,

we know that such subgroups must be isomorphic to either V4 or C4. If all of them were

isomorphic to V4, then the group would have no elements of order 4, and therefore only

elements of order 2. From Exercise 5.38, we know that such a group must be abelian, and

so we've already counted it (C2 �C2 �C2). Therefore any non-abelian group of order 8

has a copy of C4 in it.

Let a stand for the generator of this copy of C4, so that we can speak of the subgroup

hai and its one left coset, which together form all eight elements of the group. Call the
coset bhai, for some element b … hai. Just as in the classification of groups of order 6,
our task is to determine the possibilities for how a and b relate, and so determine the

structures possible in non-abelian groups of order 8. We do not yet know the order of b,

though we know it must be 2 or 4. I consider each of these two possibilities. Notice how
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e b

a ba

a2 ba2

a3 ba3

e b

a ba

a2 ba2

a3 ba3

Figure 9.14. The First Sylow Theorem leads to these two starting points for seeking non-abelian
groups of order 8. They differ only in that the b arrow in the left diagram has no arrowhead, because

it is of order 2.

much the First Sylow Theorem has helped us; we know that non-abelian groups of order

8 are built from one of two partial Cayley diagrams, those shown in Figure 9.14.

First assume b has order 2, as diagrammed on the left of Figure 9.14. We must decide

where b arrows send the element a. Any such decision can be expressed as an equation

relating a and b, which must then hold throughout the entire diagram. I use a process of

elimination to determine which of the alternatives lead to groups.

The arrow for b cannot send a to the top row of the diagram because there are

already b arrows touching both such elements.

The b arrow cannot send a to the left column, because b … hai.
If the b arrow were to send a to ba, we would have the equation ab D ba, resulting

in an abelian group. We have already listed all abelian groups and are now seeking

only the non-abelian ones.

If the b arrow were to connect a to ba2, we would have the equation ab D ba2.

By regularity, the paths ab and ba2 should lead to the same place no matter where

in the diagram we start. Starting from a, this requires drawing a b arrow from a2

to b. But b already has an incoming b arrow, so we have hit a dead end; we cannot

have ab D ba2.

The only remaining choice is to connect a to ba3, and all other b connections are then

determined by the equation ab D ba3. This creates the Cayley diagram on the left of

Figure 9.15, of the group D4.

We also must investigate the possibilities when b has order 4, as diagrammed on

the right of Figure 9.14. We can determine the relationship between a and b by asking

e b

a ba

ba3a3

ba2a2

e b

a ab

a3ba3

a2ba2

Figure 9.15. The only two non-abelian groups of order 8, as determined in Section9.4.2. The
left diagram shows D4 and the right shows Q4.
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where the b cycle continues from b. I again apply a process of elimination, this time to

determine which element is b2.

It is not any of the elements in the right column, because b … hai, and so b2 … bhai.
It is not e because that would make jbj D 2, a case we've already considered.

It is not a because if b2 D a, then b has order 8 (twice the order of a), and yields

the group C8, a case that's already done.

It is not a3 because that, too, would make jbj D 8.

Thus our only choice is b2 D a2, an equation that we can use to determine the entire b or-

bit, as shown in Figure 9.16. Regularity requires that we duplicate this pattern of b arrows

when connecting the coset ahbi. The resulting group is Q4, as on the right of Figure 9.15.

e b

a ba

ba3a3

ba2a2

Figure 9.16. An intermediate step in classifying the last non-abelian group of order 8.

Thus there are two non-abelian groups of order 8, D4 and Q4. Together with the

abelian groups C2 � C2 � C2, C4 � C2, and C8, the total number of groups of order 8

is five (up to isomorphism). The First Sylow Theorem helped us in this exploration by

giving us the two partial Cayley diagrams in Figure 9.14 as starting points. As in the

classification of groups of order 6, much fruitless searching was thereby eliminated.

9.4.3 The Second Sylow Theorem: Relationship among p-
subgroups

The First Sylow Theorem guarantees the existence of subgroups of certain sizes, and

what it told us of the relationship among such groups was that all smaller p-subgroups

are inside larger ones. The Second Sylow Theorem shows us how the largest such p-

subgroups relate through conjugacy.

Definition 9.11 (Sylow p-subgroup). We call H a Sylow p-subgroup of G if it is a

p-subgroup whose order is the highest power of p that divides jGj. In other words, H
is a p-subgroup of G that's either the largest one, or tied for it.

Theorem 9.12 (Second Sylow Theorem). Any two Sylow p-subgroups are conjugates.

Before proving this theorem, let me mention some of its important consequences that

may not at first be obvious. Conjugating by any group element creates an isomorphism

from the group to itself called an inner automorphism (Exercise 8.32). Thus when two

subgroups are conjugates (say H D gKg�1), there is an inner automorphism mapping

one to the other (�.x/ D gxg�1). Therefore conjugate subgroups are isomorphic.
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e

subgroup of order psubgroup of order p !

subgroup of order p2subgroup of order p2 !

Sylow -subgroupp

of order p3
Sylow -subgroupp

of order p3 !

inner automorphism i

!

!

!

Figure 9.17. The inner automorphism i maps one Sylow p-subgroup (of order p3) to another,

which therefore has identical internal structure.

The Second Sylow Theorem tells us that all of a group's largest p-subgroups are

one another's conjugates, and so they are all isomorphic to one another. Now recall the

nesting relationship among p-subgroups given by the First Sylow Theorem, so that every

p-subgroup is inside a Sylow p-subgroup. Conjugating any Sylow p-subgroup by any

group element results in a (possibly different) Sylow p-subgroup, with identical internal

structure, as shown in Figure 9.17. Therefore any smaller p-subgroup must have a copy

of itself (one of its conjugates) in every Sylow p-subgroup.

This improves our picture of the group A of order 200, but in a subtle way. We still

do not know whether there are any p-subgroups other than those we saw earlier in Figure

9.13, but if there are, then we know that they must have the same internal structure as
the ones in that figure, and in fact must be their conjugates. Figure 9.18 shows a Sylow

2-subgroup different from the first, yet identical in structure. I draw it in dashed lines

because its existence is not guaranteed by any of the theorems we have seen. Although

| | = 200A
?

?

?
?

a

| = 2a|

4
8

b

b2

b3

b4

| | = 5b

25

e

If any other Sylow

2-subgroup exists,

it is isomorphic to

the first.

Figure 9.18. If the groupA from Figure9.13 has more than one Sylow 2-subgroup (for example),
the Second Sylow Theorem tells us that such additional subgroups will be identical in structure to

the first (and conjugate to it).
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K

the Sylow
p K-subgroup

gH = kgH

the left coset of H
containing andg kg

e

k

g

kg

k

g

g

Figure 9.19. A stable element gH of the group action in the proof of the Second Sylow Theorem

is one for which, for any k 2 K , kgH D gH .

it appears to intersect the original Sylow 2-subgroup only at the identity, that is just one

possibility. For instance, if hai were a normal subgroup, then it would be conjugate only
to itself, so every Sylow 2-subgroup would contain all of hai.
Proof. I use again the strategy described after the statement of Theorem 9.9. Let S be
the left cosets of some Sylow p-subgroup H < G and have another Sylow p-subgroup

K act on S by left multiplication (as in the proof of Theorem 9.9).

A stable element of this action is a left coset gH for which kgH D gH for every

k 2 K, as in Figure 9.19. The path from g to kg in that figure is g�1kg, which is a

member of H because it starts and ends inside the same copy of H . When this is true

for any k 2 K, we find that all of g�1Kg is in H , and therefore g�1Kg D H , since

they are the same size. Thus if there is even one stable element gH , then H and K are

conjugates and the theorem is true.

Theorem 9.8 tells us that the number of stable elements must be congruent mod p to

jS j, which is ŒG W H�. Because H is a Sylow p-subgroup, its order is the highest power

of p dividing jGj. Thus ŒG W H� D jGj
jH j is not a multiple of p, and thus it is not zero. So

the number of stable elements must also be nonzero, making K and H conjugates.

Because a conjugate of a subgroup is a subgroup of the same size, any conjugate of a

Sylow p-subgroup will be another Sylow p-subgroup. Thus the Sylow p-subgroups are

not just some of one another's conjugates, but are all of one another's conjugates.
This is noteworthy when there is only one Sylow p-subgroup. Normal subgroups are

those that are unmoved by conjugation (Section 7.5). Thus a Sylow p-subgroup is normal

just when it has no conjugates, which is when it is the only Sylow p-subgroup. Therefore

being able to deduce the number of Sylow p-subgroups of a group helps us label some

of them as normal. The Third Sylow Theorem often helps us do just that. For this reason,

the Second Sylow Theorem is most useful when combined with the third.

9.4.4 The Third Sylow Theorem: Number of p-subgroups

Theorem 9.13 (Third Sylow Theorem). The number n of Sylow p-subgroups of G obeys
the following two restrictions.

n divides jGj n �p 1

This theorem helps us narrow down, just based on a group's order, the possible

number of Sylow p-subgroups that the group can have. It does not always narrow down
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the possibilities to only one number, but it is often a big improvement over no information

at all. After proving this theorem, I conclude the chapter with two of its applications.

Proof. The first of the two restrictions is the easier to prove. Let H be one of the n Sylow

p-subgroups of G. We know that the set of Sylow p-subgroups is the set of conjugates

of H . Another way to say this is that if G acts on its subgroups by conjugation, then the

set of Sylow p-subgroups is Orb.H/. The size n of that orbit must therefore divide jGj
by Theorem 9.4; this is the first restriction on n.

To see that n is also congruent to 1 mod p, I apply for the last time the proof strategy

used several times already this chapter (from the proof of Theorem 9.9). Let S be the set

of n Sylow p-subgroups, and consider just the subgroup H acting on S by conjugation.

If I can show that the number of stable elements is congruent to 1 mod p, then n must

also be (by Theorem 9.8). I show that there is actually just one stable element, which

obviously must be H .

For a Sylow p-subgroup K to be a stable element means that hKh�1 D K for every

h in H . That is, H is in the normalizer of K. But H and K are also Sylow p-subgroups

of the group NG.K/, and therefore conjugates in that group. Yet since K is normal in

NG.K/, its only conjugate there is itself, meaning that K and H must be the same.

Thus the number of stable elements is 1, and thus n D jS j �p 1, the second restriction

stated in the theorem.

Before seeing an extended application of this theorem, let's see how it impacts our

running example of the group A of order 200. The Third Sylow Theorem requires that

the number of Sylow 5-subgroups be a factor of 200 that's congruent to 1 mod 5. The

factors of 200 are

1; 2; 4; 5; 8; 10; 20; 25; 40; 50; 100; and 200;

and you can verify that the only one congruent to 1 mod 5 is the number 1 itself. Thus

there is only one Sylow 5-subgroup, and it must therefore be normal. However, the Third

Sylow Theorem does not narrow down the possible number of Sylow 2-subgroups as

much. That number must be a factor of 200 that's congruent to 1 mod 2, which leaves

three options, 1, 5, and 25. So the Third Sylow Theorem does not give us full information

about the number of Sylow 2-subgroups. Perhaps some additional reasoning would narrow

the number down further, or perhaps not.

The final modification of our running illustration of A is shown in Figure 9.20. It de-

scribes the Sylow 5-subgroup as both unique and normal, but leaves some question marks

near the Sylow 2-subgroup, because its number of conjugates remains undetermined.

This example of the group A has shown us how much information we can glean just

from a group's order. Smaller groups are usually easier to dissect with Sylow Theory

than larger groups, but not always; what matters more is how the group order factors.

For example, classifying groups of order 8 is harder than classifying groups of order 15,

which is our final application of Sylow Theory. The Third Sylow Theorem gives us key

information for shortening the job.

9.4.5 Classifying groups of order 15

Cauchy's Theorem tells us that in any group of order 15, there must be an element a

of order 3 and an element b of order 5. Since no higher powers of 3 or 5 divide 15,
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There may be other
Sylow 2-subgroups.

The only Sylow
5-subgroup is normal.

|A| = 200

ea

|a| = 2

|b| = 5b

b2

b3

b4

?

?

25

4
8

Figure 9.20. The group A illustrated throughout this chapter must have only one subgroup

of order 25, which is therefore normal, based on Theorem 9.13. However, that theorem does not

immediately tell us how many subgroups there are of order 8.

the subgroups hai and hbi are Sylow 3- and 5-subgroups respectively. The Third Sylow
Theorem tells us that the number of conjugates of hai must be a factor of 15 that's
congruent to 1 mod 3; the only such number is 1, making hai normal. Similar reasoning
shows that hbi must also be unique and normal.
Because hai contains only elements of order 1 or 3 and hbi only elements of order 1

or 5, these subgroups intersect only at the identity. Thus the fact proven in Exercise 8.43

applies, telling us that the group must be isomorphic to hai � hbi, or C3 � C5, which

is isomorphic to C15 by Theorem 8.7. Thus there is only one group of order 15 up to

isomorphism, the cyclic one.

We have classified all groups of order 8 or less, as well as those of order 15. In the

exercises, you are asked to extend this work to order 10, and also to try classifying all

groups of a few larger orders (12, 14, and 21). Group Explorer contains a visual library
of all groups of order 40 or less, and the computational software package GAP has a

database of all groups that goes beyond order 1000 [3].

Classifying groups of a given order is the most common use of Sylow Theory. Other

applications arise in the culmination of this book, Chapter 10, which discusses the historic

work of a young Frenchman named �Evariste Galois. See Exercise 9.22 for a preview.

9.5 Exercises

9.5.1 Basics

Exercise 9.1. Name two questions that the Sylow Theorems answered about the group

A of order 200. Name two questions they did not answer about it.

Exercise 9.2. If S has six elements, how many does Perm.S/ have?

Exercise 9.3. If G acts on S and s 2 S , consider the two sets Orb.s/ and Stab.s/.
(a) Is either of them a group?

(b) How do the two sets relate?
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(c) What is the smallest size that Orb.s/ can have?

(d) What is the largest size that Orb.s/ can have?

(e) Are all sizes in between possible?

Exercise 9.4. If jGj D 28, what sizes of subgroups does Cauchy's Theorem guarantee

exist in G? How does the First Sylow Theorem improve on that guarantee?

Exercise 9.5. How many groups are there of order less than or equal to 8?

9.5.2 Group actions and action diagrams

Exercise 9.6. What do the h arrows in Figure 9.2 signify? What do the v arrows in that

figure signify?

Exercise 9.7. Consider the action of C3 on the set fA,B,C,Dg by the interpretation
homomorphism � W C3 ! Perm.fA,B,C,Dg/ generated by the following equation.

A B C Df(1) =

(a) Draw the corresponding action diagram.

(b) What are the stable elements?

(c) What are the orbits?

Exercise 9.8. For each part below, create an action diagram satisfying the given criteria.

(a) condition (1) of the two on pages 195{196, but not condition (2)

(b) condition (2) of the two on pages 195{196, but not condition (1)

(c) neither of the two conditions on pages 195{196

(Although Figure 9.2 answers this part, create a different action diagram than that one.)

Exercise 9.9. If C5 acts on the letters fA,B,C,Dg, what will the action diagram be? Why?
Exercise 9.10. Consider the group action defined at the start of the proof of Theorem9.9.

(a) Draw the action diagram for the specific example of G D D5 and H D hf i.
(b) Verify that for each s 2 S , your diagram satisfies the Orbit-Stabilizer Theorem.

Exercise 9.11.

(a) Consider the group action defined at the start of the proof of Theorem 9.12. Draw

the action diagram for the specific example of G D Q4, H D hj i, and K D hki.
(b) Are there any stable elements?

(c) Is either H or K normal? Why or why not?

9.5.3 Justification

Exercise 9.12. Give a counterexample to the general converse of Lagrange's Theorem.

That is, give a group G and a number n dividing jGj such that G has no subgroups of

order n.



\master" | 2011/10/18 | 17:10 | page 219 | #233
i

i

i

i

i

i

i

i

9.5. Exercises 219

Exercise 9.13. I claimed that the Cayley diagrams shown at the end of Section 9.2.1

represent the groups C6 and S3. Demonstrate clearly why this is so.

Exercise 9.14. The statement of Theorem 9.5 would not be true without the assumption

that jGj is prime. Show this by finding a particular G, S , and � for which the statement
would fail.

Exercise 9.15.

(a) If gp D e and p is prime, why must jgj be 1 or p?
(b) In general, if gn D e, must jgj divide n?

Exercise 9.16. Demonstrate that, for the � defined in the proof of Theorem 9.6, each

�.n/ is a permutation of S , by showing both of the following statements to be true.

(a) Each �.n/ sends any element s 2 S to another element in S .
(b) No �.n/ sends two different elements of S to the same destination.

Exercise 9.17. Assume G acts on S .

(a) Why is Stab.s/ < G for any s 2 S?
(b) In Figure 9.2, Stab.s/ D Ker.�/. Are stabilizers always the kernel of the interpreta-

tion homomorphism?

Exercise 9.18. Consider the following alternate definition of p-group: A p-group is a

group whose elements all have orders that are powers of the same prime p.

(a) If Definition 9.7 is true of a group, explain why this alternate version is also true of

the group.

(b) If Definition 9.7 is not true of a group, explain why this alternate version is not true

either.

Exercise 9.19. Let S be the set of left cosets of a subgroup H in a group G, as in the

proof of Theorem 9.9. If G acts on S by left multiplication (like the � in that proof),

then explain why every �.g/ is a permutation. That is, how do we know it doesn't send

two different elements of S to the same destination?

Exercise 9.20. How do the Sylow Theorems make doing Exercise 8.45 easier?

Exercise 9.21. The converse of Lagrange's theorem is true for abelian groups. Any n

dividing jGj has a subgroup H < G of order n. Explain why.

9.5.4 Sylow p-subgroups

Exercise 9.22. In Chapter 10 the simple group A5 will play an important role; simple

groups are those that have no normal subgroups. For each n given below, use Sylow

Theory to explain why there can be no simple groups of order n.

(a) 33

(b) 84

(c) 12

(d) pnm for any prime p and any positive integers n and m, with m < p
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Exercise 9.23.

(a) Find all Sylow 3-subgroups in S4.

(b) Find all Sylow 3-subgroups in S5.

Exercise 9.24. What are the Sylow 2-subgroups of Dn when n is odd?

9.5.5 Classifying groups of a given order

Exercise 9.25. Classify all groups of order 9. Did you use any facts from the Sylow

Theorems?

Exercise 9.26. Classify all groups of the following two orders. The same techniques are

useful in both, because they are both of the form 2p for some prime p. Make a conjecture

about what non-abelian groups exist of any order 2p when p is prime.

(a) 10

(b) 14

Exercise 9.27. Classify all groups of order 21.

Hint: For non-abelian groups, Cauchy's Theorem tells us that there must be an element

of order 3 and an element of order 7. So start with a diagram like the one in Figure 9.21.

A decision of where to draw an a arrow from b implies an equation like ba D amb, for

some m. Use algebra (and the equation b3 D e) to find helpful restrictions on m.

e b b2

a ab ab2

a2

a3

a4

a5

a6

a2b

a3b

a4b

a5b

a6b a6b2

a5b2

a4b2

a3b2

a2b2

Figure 9.21. Exploring non-abelian groups of order 21 starts with this partial Cayley diagram.

Exercise 9.28. (Challenging) Classify all groups of order 12.
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This book ends where group theory began. In the nineteenth century, two very young

mathematicians, Neils Abel and �Evariste Galois, answered a question about which the

mathematical world had been curious for centuries. It is a question about the central activ-

ity of algebra, solving equations. Galois coined a new term to describe the mathematical

objects that played a central role in his work on this question; he called them groups, and

group theory was born.

But groups are only part of the solution; the work of Abel and Galois also involves

algebraic structures called fields. I touch on field theory in this chapter, but many of its
facts I state without proof; this book is about groups. Part of what makes the material in

this chapter great is that Galois theory is built on a beautiful interplay between groups

and fields, which we will see in Section 10.6. I hope that this final chapter also serves

as a \teaser" for field theory. If field theory piques your interest (or to see the proofs I

omit), I encourage you to study it further; refer to the list of good books I recommend at

the end of this chapter.

Let's begin with the big question that Abel and Galois answered. It's a question from

elementary algebra, about solving the simplest kinds of equations we can write. The next

two sections give all the background, state the big question, and prepare us to appreciate

its solution.

10.1 The big question

One of our first exposures to mathematics as children is counting. The set of counting

numbers f1; 2; 3; : : :g is often called N, the natural numbers.1 Later we learn the basic

operations of arithmetic, starting with addition and subtraction, and then moving up to

multiplication and division. I call these four operations \arithmetic."

As children learn arithmetic, they also learn new kinds of numbers. Although adding

two natural numbers gives another natural number (nothing new), subtracting two natural

1Some prefer to include zero in N, others leave it out. For this chapter, I use N D f1; 2; 3; : : :g.

221
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numbers like 7 � 7 or 3 � 6 requires a knowledge of zero and the negative numbers.

Adding and subtracting natural numbers broadens children's horizons to a set of numbers

we know well, the integers, Z. Soon, however, we move beyond Z as well. Although

multiplication does not reach beyond Z, division can. For example, 6� 2 is an integer,

but 6�5 is not. This prompts the introduction of fractions like 6
5
, leading to the set of all

rational numbers, Q. This brings us to the first of five key points I emphasize to organize

the background material of this chapter.

Key Point 10.1. To do arithmetic, we need at least the rational numbers.

Figure 10.1 shows the growing number system, from N to Z to Q, required by the

operations of arithmetic. Children who know only how to count live in N. When they

learn to add and subtract, they move up to Z; when they learn to multiply and divide, they

move up to Q. I use diagrams like Figure 10.1 to explain relationships among number

systems throughout this chapter.

N

Z

Q

´  ¸,

+  -,

Figure 10.1. Three number systems. The smallest one, the natural numbers, appears at the

bottom. Expanding it (upwards) with addition and subtraction gives the integers, and expanding

that set with multiplication and division gives the rational numbers.

Our knowledge of groups and their operations allows us to explain the expansion of

N to Z in terms of group theory. The set N is not a group under addition, because there

is no identity (zero) and there are no inverses (negative numbers). To find them, we must

expand to Z, which is a group under addition. In that group, negative numbers are the

inverses of positive ones, and so subtraction is not really a new operation, but a particular

use of addition; a � b can be thought of as a added to the inverse of b, as in aC .�b/.
Similarly, expanding from Z to Q can be described as generating a group under

multiplication, with one exception. As in Exercise 4.33, zero has no multiplicative inverse,

so we remove it and use the remaining integers as generators. Their multiplicative inverses

are fractions, with which we generate all the rational numbers. Exercise 4.33 used the

notation Q� to mean Q without zero, a group under multiplication. Thus on Q we have

two groups, addition on all of Q and multiplication on most of it, Q�. This prompts us
to define a new type of algebraic structure.

Definition 10.1 (field). A set S with addition and multiplication operations is a field if
the following three conditions hold.

1. S and its addition operation form an abelian group.

2. Removing the identity element from that group (the zero) leaves a set that, under the

multiplication operation, also forms an abelian group.
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3. Addition and multiplication relate through the distributive law, a.b C c/ D ab C ac.

The rational numbers Q, the real numbers R, and the complex numbers C are all

fields. (See Exercise 10.8.) There are finite fields as well, which have Cayley-diagram-

like visualizations that you can investigate in Exercise 10.29. But finite fields do not enter

into the work of Abel and Galois, so I do not cover them here.

The number systems N and Z are not fields. Although both satisfy the last condition

of Definition 10.1, N does not satisfy either of the other conditions and Z satisfies only

the first. Because arithmetic cannot be done in N or Z, the rest of this chapter works in

Q, as Key Point 10.1 suggests.

So in Q we can do arithmetic, and all that arithmetic is good for, like accounting,

basic physics, and many other quantitative disciplines. From work in these areas, natural

questions arise. How many haircuts must a barber give in a month to break even on the

costs of his shop? What will my monthly payment be on a loan of this much money

over this much time? What is the escape velocity for a rocket with given specifications?

Answering these questions is the business of algebra, building on the foundation of

arithmetic. In algebra, you express a question's requirements in an equation using the

language of arithmetic and an \unknown" (such as x). Then you \solve" the equation for

the unknown quantity. Though notation has changed over time, this kind of mathematical

work has been going on for millenia. So surely mathematicians must know how to solve

every equation of arithmetic by now. But this is not so, and it is the problem that Abel

and Galois addressed.

The question is about the most basic algebraic equations we can write, with only the

operations of arithmetic, rational numbers, and one variable for expressing an unknown

quantity; I always use the variable x. I call this family of equations \equations from

arithmetic." Here is a simple example.

2x C 1 D 0

To \solve" the equation means to find a number that can replace x to make the equation

true. This equation is easy to solve, using the operations of arithmetic on both sides at

once.

subtract 1: 2x D �1
divide by 2: x D � 1

2

But what about more difficult equations from arithmetic? Even this simple family

contains some pretty hairy equations, like this one. (And you can imagine worse!)

.12 � x/.13C x
2
/

19 � xC1
x�1

D 100C 50

x � 9

But all equations from arithmetic can be simplified dramatically. The above equation, for

instance, simplifies to this one.

x4 C 4x3 C 3157x2 � 31354x C 31192 D 0

Still tricky to solve, but with two advantages. First, all fractions, parentheses, and nested

expressions have been removed and the equation looks much neater. Second, all equations

of the above form have a centuries-old, proven technique for solving them.
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The left side of the above equation is a polynomial. A polynomial is a list of terms
added together; each term includes a coefficient, an x, and an exponent on the x. Here
are some polynomials, with example terms explained.

4 + 10x 3 – 6x x2

This term’s coefficient is
4 and its exponent is 1.

This term’s coefficient is
–1 and its exponent is 3.

This term’s coefficient is
6 and its exponent is 0.

x x x8 3
– + 9 + 6

We use exponents when writing polynomials, but exponentiation is not really a new oper-

ation; because the exponents will always be nonnegative whole numbers, they are just

shorthand for repeated multiplication.

Polynomials have the general form

anx
n C an�1x

n�1 C � � � C a2x
2 C a1x C a0;

in which each ai is a coefficient and n is the highest power of x, called the degree of the
polynomial. The degrees of the three example polynomials above are 1, 2, and 8, from left

to right. As those examples indicate, some of the coefficients other than an may be zero.

Exercise 10.4 asks you to prove that any equation from arithmetic simplifies to a

polynomial on one side and zero on the other. To get better acquainted with that fact,

you may wish to try that exercise now. Because of that simplification, a method for

solving equations of a polynomial equal to zero could be used to solve any equation from

arithmetic. This is so important, I stress it as my second key point.

Key Point 10.2. A method for solving an equation of a polynomial equal to zero would
actually solve every equation from arithmetic, because any equation from arithmetic sim-

plifies to that form.

I therefore focus our attention on equations that set a polynomial equal to zero, called

polynomial equations. The solutions to such equations are called roots of the polynomial.
Because our equations come from arithmetic, their coefficients are all rational numbers.

Polynomials of degree 1 (like the one I solved on page223) are called linear polynomials.

Those of degree 2 are called quadratic, and algebra students learn to solve them with the

quadratic formula. It says that any equation ax2CbxCc D 0 has two solutions, expressed

together in the formula

x D �b ˙
p
b2 � 4ac
2a

:

The quadratic formula has been known since at least as early as the twelfth century.

Although elementary algebra classes usually end their study of polynomial equations with

the quadratic formula, the curiosity of mathematicians does not stop there, especially

given the importance of solving polynomial equations just stated in Key Point 10.2. In

the sixteenth century, Girolamo Cardano published a formula for solving cubic equations,

those made from third-degree polynomials, and therefore having the form

ax3 C bx2 C cx C d D 0:

Although the cubic formula is lengthier than the quadratic formula (filling up several

lines), it doesn't involve any new concepts. It uses only the operations of arithmetic and
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radical signs, just like the quadratic formula. The quadratic formula involves a square

root and the cubic formula involves both square and cube roots, but both types of roots

are written using radical signs. The quadratic formula finds two solutions, while the cubic

finds three.

And mathematics marches on. In the same century Lodovico Ferrari developed a way

to solve any quartic polynomial equation (fourth degree), and that solution also involves

just the operations of arithmetic and radicals (in his case, sometimes fourth roots). It, too,

is lengthy, but it finds all four solutions to any quartic polynomial equation.

The war on polynomial equations seemed to be going well, but that's where progress

stopped. Although some later mathematicians developed formulas for solving some types
of quintic polynomial equations (fifth degree), no method was found to handle every
quintic. In fact, there were some quintic polynomials, like x5 C10x4 �2, whose solutions
no one could find. This brings us to the big question I've been building up to since the

first page of this chapter.

Key Point 10.3. The work of Abel and Galois answered this big question: \Is there a
formula for solving fifth degree polynomial equations?"

In 1824, at the age of 22, Neils Abel found a particular quintic polynomial that he

proved could never be solved using only the operations of arithmetic and radicals. It's
not that the equation had no solutions, but rather the operations of arithmetic together

with radicals could not express those solutions. In other words, the language for writing
the solutions for polynomial equations of degrees 1 through 4 is insufficient for writing

the solutions to polynomial equations of degree 5.

It has since become common to call a polynomial \solvable" or \solvable by radicals"

when its roots can be written using the operations of arithmetic and radicals, and \unsolv-

able" or \unsolvable by radicals" otherwise. Shortly after Abel's revelation, the budding

19-year-old prodigy �Evariste Galois introduced the subject of group theory to classify ex-

actly which polynomials were solvable by radicals. This chapter is about the role of group

theory in that work. Because all that follows depends on the answer Abel and Galois gave

to the big question, I state their answer again, more fully, as my next key point.

Key Point 10.4. The operations of arithmetic and radicals have been used to write
formulas to solve polynomial equations of degrees 1 through 4, but they cannot be used

to write a \quintic formula," for solving polynomial equations of degree 5.

10.2 More big questions

Figure 10.1 showed us that learning the operations of arithmetic broadens our number

system, first to the integers and then to the rationals. Algebra also broadens our view,

because the fundamental operation of algebra, solving equations, often introduces new

kinds of numbers. Solving a simple linear equation does not result in anything but rational

numbers, as in the example on page 223. But solving a quadratic equation often requires

taking a square root.

Some square roots of rational numbers give other rational numbers, such as

q
9
4

D 3
2
,

but not all. The number
p
2 is in the field of real numbers R, but is outside Q. Further-

more, some quadratic equations have solutions that aren't even real numbers; consider
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Decimal expansions of real numbers

Rational numbers Irrational numbers

Finite Repeating Non-repeating pattern No clear pattern

1:612

5:0

19:32651

1
3

D 0:3333 � � �
100
11

D 9:0909 � � �
1
7

D 0:142857 � � �

1:2345678910 � � �
0:101001000 � � �
0:1223334444 � � �

� � 3:14159 � � �
e � 2:71828 � � �

p
2 � 1:41421 � � �

Table 10.1. Real numbers can be written as decimal expansions, of which there are many

different kinds. This table splits out those decimals that represent rational numbers from those that

represent irrational numbers.

x2 � 2x C 2 D 0. The quadratic formula gives the solutions

x D 2˙
p
4 � 8
2

D 2˙ 2i

2
D 1˙ i:

Solving this simple polynomial with integer coefficients takes us all the way outside R,

into the complex numbers C. (Recall that i is shorthand for
p

�1, so
p

�4 D i
p
4 D 2i .)

Let's review how Q, R, and C differ.

The rational numbers are those that can be written as a ratio a
b
of two whole numbers

a and b (with b ¤ 0). Another (equivalent) way to define Q is those numbers whose

decimal expansions are either finite or repeating. Many real numbers are in neither of

these two categories, and are therefore irrational. Table 10.1 shows example decimal

expansions inside and outside Q. To move beyond R requires the introduction of the

so-called \imaginary" number i , which satisfies the equation i2 D �1. Just as arithmetic
expands a child's number system fromN to Z to Q, so algebra expands students' number

systems from Q to R to C, as illustrated in Figure 10.2. (Technically, solving polynomial

equations cannot generate every element of R, but I come to that shortly.)

The irrational numbers that matter most to the big question are square roots, cube

roots, and other radicals. If we can take square roots then we can use the quadratic

formula to solve any quadratic equation. If we can also take cube roots, we can use the

cubic formula to solve any cubic equation. If we have fourth roots, the quartic formula

C

R

Q

taking square roots of negative rationals

taking square roots of positive rationals

all real numbers (any finite or infinite decimal)

rational numbers,
a
b for (a, b bÎ Z 0)¤

(these are also the finite and repeating decimals)

all complex numbers + , for ,a bi a  b Î R

Figure 10.2. The Hasse diagram of the containment of the field Q in the field R, and R in C
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Q

solving polynomial equations

???

using radicals

???

operations of arithmetic

N

Figure 10.3. The big question boils down to a comparison of two operations that lead out from
Q, the operation of introducing radicals and the operation of solving polynomial equations. Where

does each lead, and how do they relate?

will solve any quartic equation. You can see how it would be natural to think that fifth

roots should make it possible to write a formula for solving quintic polynomial equations.

But Abel and Galois's answer to the big question is the opposite. It is at this point|degree

5|that radicals stop being sufficient to solve polynomial equations.

This suggests we view the big question in a new light, as a comparison of the power

of two operations, using radicals and solving polynomial equations. Figure 10.3 shows

these two operations leading from Q, and asks whether their destinations are different.

We can improve that figure in two ways. First, it should be clear that every radical

is a solution to some polynomial equation; any n
p
a is a solution to xn � a D 0. So I

should redraw Figure 10.3 to indicate that the unknown field on the top left is contained

in the unknown field on the top right. Second, some real and complex numbers are not

the solution to any algebraic equation; such numbers are called transcendental, and those
that are solutions to polynomial equations are called algebraic. The numbers � and e are
well-known transcendental numbers. So we know that neither of the unknown fields in

Figure 10.3 is all of R or C. Figure 10.4 is a more accurate version, in which A stands

for the algebraic numbers.

Figure 10.4 helps us phrase the big question in terms of the relative power of two

basic operations. Does introducing radicals reach as far beyond Q as solving polynomials
does? Or, can polynomials be solved using just arithmetic and radicals? The big question
is about the relationship between these two fundamental mathematical activities.

Q

solving polynomial equations

A

using radicals

???

???

operations of arithmetic

N

Figure 10.4. An updated version of Figure 10.3, using A to stand for the algebraic numbers,
and recognizing that every n

p
a is algebraic.
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228 10. Galois theory

Phrasing the big question this way shows its similarity to other big mathematical

questions, hence the title of this section. There are three famous questions that the ancient

Greeks asked in the field of geometry. Can the basic operations of geometry, performed

with a ruler and compass, be used to square a circle, double a cube, or trisect an angle?

You can see their similarity to our big question; each is a question of how far certain

operations can reach. These three questions can also be answered using Galois theory,

due to the tight relationship between algebra and geometry. This is my final key point.

Key Point 10.5. Galois Theory is useful when analyzing operations that reach out from
Q to new fields. Our big question can be answered using Galois theory, as can other

historical questions in mathematics.

I mention these geometric questions to show that Galois theory has power beyond

the one question I cover in this chapter. Readers interested in the application of Galois

theory to geometric problems can refer to sources such as [11] and Chapter 13 of [1].

This completes the background material, and we can now dig into the work that answered

the big question.

10.3 Visualizing field extensions

Two kinds of diagrams will play an important role in this chapter. I use diagrams like

Figure 10.4 to illustrate and compare operations that reach outside Q. They are actually

a kind of Hasse diagram. In Section 6.6.3 we used Hasse diagrams to illustrate the

relationships among a group's subgroups. Vertical lines connected smaller subgroups

(lower in the diagram) up to larger ones (higher in the diagram) in which they were

contained. Now I use Hasse diagrams to show the relationships among fields that extend

Q, and vertical or diagonal lines still indicate containment.

The second visualization technique important in this chapter is based on the fact that

all polynomials whose coefficients are in C have all their roots in C as well. For this

reason C is called an algebraically closed field, meaning that the operation of solving
equations never reaches outside it. Thus all the numbers and fields in this chapter are

inside C, and a way to visualize the field C would enable us to visualize any of those

numbers and fields.

Exercise 10.8 guides you through proving that any complex number can be written as

aC bi for some real numbers a and b. Here are some complex numbers in this form.

1C i 6 � 2i 3 1
2

C 9
11
i

p
2C

p
3i

Because complex numbers have this two-part structure, we use points in the familiar

two-dimensional coordinate plane to represent complex numbers, plotting a C bi at the

point .a; b/. Figure 10.5 shows where some example complex numbers lie on the complex

plane. Take a moment to verify your understanding of this visualization technique, since

many future figures depend on it. Notice that the x axis is the real number line.

We can use graphs like Figure 10.5 to visualize the solutions to polynomial equations,

putting all of a polynomial's roots together on one graph. Figure10.6 shows four examples,

a graph for each of four different polynomials. See if you can spot any patterns in Figure

10.6. One interesting thing to notice is that whether a polynomial is solvable is not
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x

y

0 1

i

2 5. i

2 + 1 5. i

–i

–1–2

1 – 2i

Figure 10.5. Example complex numbers plotted as points in the complex plane. Notice that all
the real numbers are on the x axis and all real multiples of i are on the y axis.

related to how complicated it looks on paper. I stated earlier that the deceptively simple

polynomial x5 C 10x4 � 2 is unsolvable, yet the lengthy quintic on the bottom right of

Figure 10.6 is solvable, and all its solutions are listed there.

But a more important pattern you may have spotted is that the root sets in Figure 10.6

have some symmetry. Each is a mirror reflection of itself over the x axis, and a vertical

flip would therefore respect the shape of the root set. Seeing symmetry in polynomial root

sets is the first step in Galois theory. The following definition will help us prove that this

mirror symmetry appears in the root set of any polynomial.

Definition 10.2 (complex conjugate). For any complex number aC bi , we call a � bi

its complex conjugate (or sometimes just its conjugate, for short). If c is any complex
number, we write c to mean its complex conjugate.

For example, 1C i and 1� i are conjugates, so we could write 1C i D 1� i . And if
c D

p
2

2
C

p
2

2
i , one of the four roots to the bottom left polynomial in Figure 10.6, then

c D
p

2
2

�
p

2
2
i . Note that not all four roots of that polynomial are one another's complex

conjugates.

c ¤ �
p
2

2
C

p
2

2
i and c ¤ �

p
2

2
�

p
2

2
i

Complex conjugation negates the imaginary part only, and is therefore the vertically

flipped version of the original point. Real numbers are their own complex conjugates, for

example 6 D 6 and 0 D 0.

Theorem 10.3 (Complex Conjugate Root Theorem). If r is a root of a polynomial, then
its conjugate r is a root of the same polynomial. Therefore every polynomial's root set
has mirror symmetry over the x axis of the complex plane.

Proof. Take any polynomial, written in the general form

anx
n C an�1x

n�1 C � � � C a2x
2 C a1x C a0:
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Polynomial: x2 � 2x C 2 Polynomial: 12x3 � 44x2 C 35x C 17

Roots: 1˙ i Roots: �1
3
, 2˙ 1

2
i

x

y

1 + i

1 – i

x

y

Polynomial: 8x5 � 28x4 � 6x3

Polynomial: x4 C 1 C83x2 � 117x C 90

Roots: ˙
p

2
2

˙
p

2
2
i Roots: �2, 3

2
, 3, 1

2
˙ i

x

y

x

y

–2 3

Figure 10.6. The root sets of four solvable polynomials (degrees 2 through 5) plotted in the

complex plane

If one of its roots is r , then plugging r into the polynomial yields zero.

anr
n C an�1r

n�1 C � � � C a2r
2 C a1r C a0 D 0

From this assumption I will prove that r is also a root. This involves several steps, but

each is only basic algebra. Taking the complex conjugate of both sides of the above

equation gives

anrn C an�1rn�1 C � � � C a2r2 C a1r C a0 D 0;

because of course 0 D 0. Now I want to simplify the left side, which is a conjugate of

a lengthy sum. Therefore I'd like to prove that conjugation can be separated over each
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10.4. Irreducible polynomials 231

term of a sum of complex numbers, as in the following equation.

.aC bi/C .c C di/ D aC bi C c C di

This is not very hard to prove; applying Definition 10.2 and some simple algebra shows

that the two sides of this rule are equal.

.a C bi/C .c C di/ D .aC c/C .b C d/i D .a C c/� .b C d/i

a C bi C c C di D a � bi C c � di D .a C c/� .b C d/i

Applying the rule simplifies the original polynomial equation a bit.

anrn C an�1rn�1 C � � � C a2r2 C a1r C a0 D 0

Each term in this sum is a conjugate of two multiplied expressions, an ai and an r
i .

So to simplify further, I would like to split the conjugation over the two terms in each

multiplication, using a rule like this one.

.a C bi/.c C di/ D .a C bi/.c C di/

Exercise 10.5 asks you to prove this rule, and I apply it here without proving it.

an rn C an�1 rn�1 C � � � C a2 r2 C a1 r C a0 D 0

Because each coefficient ai is a real number, it is its own conjugate, so the equation

simplifies even further.

anrn C an�1rn�1 C � � � C a2r2 C a1r C a0 D 0

Finally, natural number exponents just mean repeated multiplication, so the multiplication

rule used earlier allows me to split up powers as well.

anr
n C an�1r

n�1 C � � � C a2r
2 C a1r C a0 D 0:

This last equation shows what I set out to prove, that r is a root of the same polynomial.

This symmetry of root sets can also be expressed using group actions (as defined in

Definition 9.1). The above theorem tells us that the group C2 acts on any polynomial

root set S via the homomorphism  W C2 ! Perm.S/, with  .1/ being the permutation
that sends each root r to r . This is only the beginning of the symmetries we will find

in root sets, and such symmetries are the foundation of Galois theory. To find other such

symmetries, we will need to get acquainted with the concept of irreducible polynomials.

10.4 Irreducible polynomials

One of the first techniques algebra students learn for solving polynomial equations is

factoring. For example, we do not need to resort to the quadratic formula to solve the

following equation; we can factor instead.

x2 � x � 6 D 0
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232 10. Galois theory

.x � 3/.x C 2/ D 0

x � 3 D 0 or x C 2 D 0

x D 3 or x D �2
Factoring is breaking a larger-degree polynomial down into smaller-degree polynomials

multiplied together; they are the factors, and they are easier to solve because they're
smaller. In this case the factors are linear polynomials, which are very easy to solve. If

we had known the two roots 3 and �2 beforehand, they would have told us how to factor
the polynomial, because a quadratic with roots a and b factors as .x � a/.x � b/.
In general, if we know how to find even one rational root r of any polynomial, then

we can factor the linear polynomial .x � r/ out of the original. For example, take the

cubic polynomial

12x3 � 44x2 C 35x C 17

from Figure 10.6; one of whose roots is �1
3
. We can factor out the corresponding linear

polynomial .xC 1
3
/, which has �1

3
as a root. To stick with integer coefficients, we could

use .3x C 1/, which has the same root. Factoring can be done by polynomial division,

which you can learn from Exercise 10.6, and yields

.3x C 1/.4x2 � 16x C 17/:

The quadratic factor cannot be factored further (into two linear polynomials) because its

roots are not rational and we are only considering polynomials with rational coefficients.

We could factor it if we allowed complex coefficients; its roots are 2˙ 1
2
i , so it factors as

�

x �
�

2C 1
2
i
�� �

x �
�

2 � 1
2
i
��

:

Because 4x2 � 16x C 17 cannot be factored into polynomials with rational coefficients,

we call it irreducible, or more specifically irreducible over Q.
Irreducible polynomials are of interest to us precisely because they are the polynomials

whose roots are outside of Q. If a polynomial can be factored into linear factors over Q,

like the first example in this section, then its roots are part of that factoring and must

therefore be in Q. Solving such a polynomial does not require expanding our number

system beyond Q. If a polynomial cannot be factored at all, then none of its roots are

in Q, and solving it requires expanding to some number system that contains the roots.

Then of course there are polynomials in between these two extremes, like the one we just

considered; one of its roots was in Q, but to find the other two we had to move outsideQ.

For polynomial roots outside Q, we need new notation (besides just arithmetic and

natural numbers) to write them down. Thus the radical sign was invented. There is no

rational number solution to x2 � 2 D 0, and so mathematicians created a new symbol,p
2, and adopted the convention that that symbol stands for the number whose square is

2, the solution to the equation x2 � 2 D 0.

Of course then whenever we encounter any irreducible polynomial x2�a (for a > 0 in
Q) we express its root as

p
a. And the root of any irreducible xn�a, for any integer n > 1,

we write as n
p
a, which allows cube roots, fourth roots, and so on.2 Radicals represent

solutions to this particular family of irreducible polynomials, xn � a, for a > 0 in Q.

2Polynomials like xn � a have n roots, but only one of them is a positive real number. That is the one we

express as n
p

a. For more details on this ambiguity (and what the other roots look like), try Exercise10.17.
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Combining radicals with the other field operations, we can express solutions to equa-

tions outside that family as well. We've seen that the quadratic formula combines one

radical with several arithmetic operations to solve any second-degree polynomial equation.

Although we haven't looked at the formulas for solving cubic and quartic equations, they,

too, are only arithmetic operations and radical signs (though they are large expressions!).

So the new notation n
p
a has more power than just solving xn D a; in fact, combined

with the existing arithmetic operations, it has been used to create formulas for solutions

to all polynomials up to degree 4!

But we begin to see the problem that causes the quintic to be unsolvable. This handy
n
p
a notation was invented only to solve some irreducible polynomials, and thus we should

not be surprised if it is not enough to solve all irreducible polynomials. In fact, perhaps
the surprise should be that it can be used to solve all polynomials of degrees 1 through 4!

This is what Figure 10.4 represents; we know that what we can reach by adding radicals

to Q is part of A, but it is not surprising that radicals are not enough to reach all of A.

Since irreducible polynomials play such an important role, we will want to be able to

tell when a polynomial is irreducible. There is not an easy method that works all the time,

but the following theorem helps. It is the first of several facts outside of group theory

that I introduce without proof.3

Theorem 10.4 (Eisenstein Criterion). A polynomial with integer coefficients is irre-
ducible if we can find a prime number p that satisfies both of the following requirements.

1. The coefficient of the highest power of x is not a multiple of p, but all the other
coefficients are.

2. The constant term (the term without an x) is not a multiple of p 2.

For example, the theorem says that the following polynomial is irreducible, using the

prime p D 2.

Highest power of :x
The coefficient 1 is
not a multiple of 2.

Other powers of :x
All these coefficients
are multiples of 2.

Constant term:
14 is not a
multiple of 4.

x x x10 7+ 4 + 18 + 14

10.5 Galois groups

Now comes the real meat of the chapter, where I use both irreducible polynomials and

group theory to analyze operations like radicals that reach outside Q. Such operations

are called field extensions, and we have already seen in Theorem 10.3 that they have
symmetry, which group theory can describe.

3 Mathematical texts do not usually state results without proving them. But my purpose with this theorem and

those that follow is not to convince you that they are true, but to show you the beautiful theory they create. If

you are curious about the proofs, as I hope you are, refer to the books I recommend at the end of the chapter.
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234 10. Galois theory

We study polynomial roots (and their symmetries) by examining what it is like to

extend Q just enough to contain one polynomial's roots. I begin with a simple example,

x2�2, whose two roots are˙
p
2. Once we understand the operation of adding one radical

to Q (in this case
p
2), I move on to adding more than one radical (Section 10.5.4), then

adding radicals that are not square roots (Section 10.5.5). I then show how Galois proved

powerful and beautiful facts about these symmetries.

10.5.1 A small field extension, Q.
p

2/

How far beyond Q must I expand my view to solve x2 � 2 D 0? It is not enough to add

the single number
p
2; I want the result to be a number system capable of arithmetic, a

field. Furthermore, I want it to be the smallest field outside Q that contains
p
2, because

I want to know just how far I am forced to reach to solve x2 �2 D 0. We call such a field

Q.
p
2/; it includes Q,

p
2, and all numbers obtainable from

p
2 using the operations of

arithmetic. For example, all of the following numbers are in Q.
p
2/.

�
p
2 6C

p
2

�p
2C 3

2

�3
p
2

16C
p
2

Even so, every element of Q.
p
2/ can be written compactly. Although some of those

shown above look not-so-compact (and we could imagine huge expressions involving lots

of natural numbers, arithmetic, and
p
2), they all simplify to a rather small form. For

example, expanding the cube
�p

2C 3
2

�3

and combining like terms (remembering that

.
p
2/2 D 2 and .

p
2/3 D 2

p
2) yields a two-term result.

�p
2C 3

2

�3

D
�p

2
�3

C 9
2

�p
2
�2

C 27
4

p
2C 27

8
D 12 3

8
C 8 3

4

p
2

Exercise 10.9 covers tricks for simplifying other expressions fromQ.
p
2/; curious readers

may wish to try that exercise now. The result is that any element of Q.
p
2/ can be

simplified to the two-term form aC b
p
2 for some a; b 2 Q. Thus Q.

p
2/ is rather like

C, whose elements have the two-term form aC bi , with a; b 2 R.

The number of terms in the expression for a general element of an extension field is

called the degree of the extension. We write
h

Q.
p
2/ W Q

i

to mean the degree of Q.
p
2/

as an extension of Q, so
h

Q.
p
2/ W Q

i

D 2. Though I did not need it for this example, the

following theorem will prove useful in determining the degree of other (larger) extensions.

Exercise 10.12 asks you to do a portion of its proof.

Theorem 10.5. The degree of an extension Q.r/ always matches the degree of the
irreducible polynomial to which r is a root.

For example, Q.
p
2/ is a degree-2 extension and

p
2 is a root of the degree-2 irre-

ducible polynomial x2 � 2.
Extension fields are not easy to visualize directly. On a graph of the complex plane,

both Q and Q.
p
2/ look just like R, the x axis. So rather than visualize field extensions

themselves in the complex plane, I return to Hasse diagrams and depict relationships

among fields. Figure 10.7 shows Q.
p
2/ as larger than Q, but smaller than R.
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R all real numbers (finite and infinite decimals)

Q.
p
2/ all numbers aC b

p
2, for a; b 2 Q

Q rational numbers, a
b
for a; b 2 Z (b ¤ 0)

Figure 10.7. The field Q.
p
2/ is larger than Q and smaller than R, but equal to neither of

them.

The fact that Q.
p
2/ ¤ R means that there are still irrational numbers outside of

Q.
p
2/. Although adding

p
2 to Q required adding many irrational numbers besides justp

2, it did not require adding every irrational number. For example,
p
3 is not in Q.

p
2/,

as you already know if you have tried Exercise 10.9. Now that we know what Q.
p
2/

contains, let's see how Galois theory can show us its symmetry.

10.5.2 The symmetries of Q.
p

2/

In the polynomial root sets of Figure 10.6, the vertical mirror symmetry of complex

conjugation is visually evident. But since we are not visualizing Q.
p
2/ in the complex

plane, how can we measure its symmetries? More to the point, what do we mean by

\symmetry" in this case?

In Chapter 3, I said that an object has symmetry when it looks the same from two

different points of view. In the case ofQ.
p
2/, we cannot speak of points of view, because

we have no way to look at the field with our eyes. So in place of our \eyes" we use

arithmetic, the field Q. Any two roots that can't be distinguished using equations of
arithmetic we will say \look the same" to us. More specifically, we're interested in those
ways that the roots of a polynomial can be rearranged without making any true equations

of arithmetic become false, or vice versa.

Let me show you what I mean. The polynomial x2 � 2 has two roots, ˙
p
2, so we

seek an action of some group G on the roots,  W G ! Perm.f
p
2;�

p
2g/. Because the

group Perm.f
p
2;�

p
2g/ has only two elements, our task is simple; either the roots are

interchangeable, in which case G is C2 and  is an isomorphism, or they aren't, in which

case G is the trivial group (no symmetry). The group G is therefore the symmetries of the

polynomial's roots, and is called the Galois group of the polynomial. Here is a precise
definition.

Definition 10.6 (Galois group). If r1 through rn are the roots of a polynomial and we

specify an action of G on them by an embedding  W G ! Perm.fr1; : : : ; rng/ whose
image is exactly those permutations undetectable by equations of arithmetic, then G is

the Galois group of the polynomial.

The question is therefore this: Can we use equations of arithmetic to tell the roots˙
p
2

apart? If we can, then they are not interchangeable and these roots have no symmetry.

Otherwise, they are interchangeable, and the roots have a small amount of symmetry (but

as much symmetry as you can expect from two things|they can be swapped). Since
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236 10. Galois theory

arithmetic does not include the square root symbol, I will need to call the roots r1 and r2
in order to be able to mention them in an equation of arithmetic.

We might try to force r1 D
p
2 and r2 D �

p
2 using the equation r1 D r2 C 2

p
2.

This would certainly distinguish one root from the other, but unfortunately it cheats

by including the symbol
p
2, so it's not an equation from Q. Sticking to equations of

arithmetic allows true statements like r1r2 D �2, but this equation fails to distinguish
the two roots. You could assign the values ˙

p
2 to r1 and r2 in either order and this

equation would remain true. The equation r1 C r2 D 0 has the same problem; it is an

equation from arithmetic, but doesn't tell the roots apart.

Try as I may, I will never find any way to distinguish the roots of x2 � 2 using

only equations of arithmetic. (A theorem supporting this appears in Section 10.5.4.) The

two roots \look the same" from Q's point of view. The group G of symmetries of this

polynomial's roots is isomorphic to C2, because the two roots are interchangeable as far

as Q is concerned. The action  .1/ interchanges the two roots.

10.5.3 Symmetries of field extensions

This symmetry extends beyond just the roots themselves, to all ofQ.
p
2/, becauseQ.

p
2/

is generated by those roots. All elements of the field Q.
p
2/ are of the form a C b

p
2,

so interchanging ˙
p
2 turns any element a C b

p
2 into a � b

p
2. Because we're only

rearranging the roots, the elements and operations of Q are left unmoved. Mapping a C
b
p
2 to a � b

p
2 interchanges ˙

p
2, but leaves a and b unchanged, and if we think of

a�b
p
2 as aC b.�

p
2/, we see that the addition was also unaltered. Any rearrangement

of a polynomial's roots can be expanded to a symmetry of the whole extension field of Q

generated by those roots, one that leaves elements and operations of Q unaltered. Galois

theory is a study of the symmetries both of roots and of their field extensions.

In Chapter 8, I called ways to rearrange the elements of a group while respecting

its operation automorphisms of the group. So we call ways to rearrange a field while

respecting its operations field automorphisms. If � W Q.
p
2/ ! Q.

p
2/ is the above

example, �.aC b
p
2/ D a�b

p
2, then it does respect the operations of Q, by satisfying

the following two equations for any a and b in Q.
p
2/. (See Exercise 10.15.)

�.a C b/ D �.a/C �.b/ �.a � b/ D �.a/ � �.b/

Beyond being a field automorphism, � also keeps every element of Q unmoved. Like all

symmetries we'll study in polynomial roots, it only rearranges numbers outside Q. We

say that � leaves Q fixed, or � fixes Q.

Complex conjugation is another field automorphism that fixes Q. (Recall Theorem

10.3.) Note how similar complex conjugation is to the map �; it maps aC bi to a � bi .
Figure 10.8 illustrates complex conjugation in two ways, on the left as a permutation

of the roots of a polynomial, and on the right as a field automorphism. Both ways of

thinking of the action have natural visualizations, as shown.

But not all field automorphisms are easy to draw in the complex plane. For example,

the permutation interchanging the roots ˙
p
2 is easy to draw, as in Figure 10.9, but

the corresponding automorphism � of Q.
p
2/ cannot be drawn clearly. The reason is

that � does not keep numbers near one another. For example, it maps
p
2 to �

p
2, but
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x

y

x

y

Complex conjugation acts on the roots of

12x3 � 44x2 C 35x C 17 by this

permutation.

Complex conjugation is an automorphism

of C that can be shown as a vertical flip

over the x axis.

Figure 10.8. Complex conjugation depicted in two ways, on the left as a permutation of the

roots of a specific polynomial (12x3 � 44x2 C 35xC 17 from Figure 10.6), and on the right as an

automorphism of C that fixes R (and therefore Q).

the rational number 7
5
, which is near to

p
2, is kept fixed. This same problem occurs

all along the x axis, and so no simple geometric operation like the flip of Figure 10.8

suffices to represent �. For this reason, I primarily speak of polynomial root symmetries

as permutations of the roots, as in Definition 10.6, and I illustrate them as in Figure 10.9.

Galois theory is about computing and using these groups of symmetries. We computed

C2 as the Galois group of x
2 � 2, and the homomorphism  W C2 ! Perm.f

p
2;�

p
2g/

defining the action is an isomorphism. It is common to use the term \Galois group"

x

y

Figure 10.9. The permutation that interchanges the roots ˙
p
2 of x2 � 2, whose extension to

an automorphism of Q.
p
2/ has no easy visualization.
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238 10. Galois theory

loosely, and sometimes refer to the image of  (a group of permutations) as the Galois

group, or refer to the corresponding group of automorphisms as the Galois group. These

three groups are isomorphic (since  is an embedding), so this bit of imprecision does

no harm.

In Section 10.6, we'll use a polynomial's Galois group to determine that polynomial's

solvability by radicals. But first, let's get a better feel for Galois groups by computing

two more.

10.5.4 The symmetries of Q.
p

2;
p

3/

I stated earlier that
p
3 is not in Q.

p
2/, but adding

p
3 to Q.

p
2/ with another field

extension provides a good example of a larger Galois group. This time, we are not

extending the field Q, but the field Q.
p
2/. We can express this as Q.

p
2/.

p
3/ to show

the two-step extension, or using the more common shorthand Q.
p
2;

p
3/.

Because
p
3 is a root of a degree-2 polynomial, we might expect that this is a degree-2

extension of Q.
p
2/. This means it should contain elements of the form aC b

p
3, with

a and b coming from Q.
p
2/ rather than from Q (that is, each of a and b is a two-term

c C d
p
2, for some c; d 2 Q). You can show that this is correct in Exercise 10.11. Thus

elements of Q.
p
2;

p
3/ all look like

.a C b
p
2/C .c C d

p
2/

p
3;

with a; b; c; d 2 Q. Expanding that form obtains the four-term expression

aC b
p
2C c

p
3C d

p
6;

for representing elements of Q.
p
2;

p
3/ with coefficients from Q. So Q.

p
2;

p
3/ is a

degree-2 extension of Q.
p
2/, but a degree-4 extension of Q. That is,

h

Q.
p
2;

p
3/ W Q.

p
2/

i

D 2

because we added
p
3 to Q.

p
2/ as a solution to the degree-2 equation x2 � 3 D 0, but

h

Q.
p
2;

p
3/ W Q

i

D 4:

This suggests the pattern expressed in the following theorem.

Theorem 10.7. Successive extensions multiply degrees.

ŒQ.a; b/ W Q� D ŒQ.a; b/ W Q.a/� ŒQ.a/ W Q�

This theorem is best shown in a diagram like Figure 10.10. On the bottom is the field

Q, to which we add
p
2 to move up to the degree-2 extension Q.

p
2/, and then add

p
3

to move up to the degree-4 extension Q.
p
2;

p
3/. The full extension Q.

p
2;

p
3/ is a

degree-4 extension because it is two successive degree-2 extensions, and 2 � 2 D 4.

The field Q.
p
2;

p
3/ can be obtained in other ways that make sense based on the

general form a C b
p
2C c

p
3C d

p
6 for elements of the field. In addition to the two-

step extension Q.
p
2;

p
3/ in Figure 10.10 any of the following two-step extensions also

reaches the same field, as you can prove in Exercise 10.11.

Q.
p
3;

p
2/ Q.

p
2;

p
6/ Q.

p
6;

p
2/ Q.

p
3;

p
6/ Q.

p
6;

p
3/
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degree 4

8

ˆ
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ
:

Q.
p
2;

p
3/

all numbers aC b
p
3; for a; b 2 Q.

p
2/

.or aC b
p
2C c

p
3C d

p
6; for a; b; c; d 2 Q/

degree 2

Q.
p
2/ all numbers aC b

p
2 for a; b 2 Q

degree 2

Q rational numbers, a
b
for a; b 2 Z .b ¤ 0/

Figure 10.10. Extending Q with the degree-2 extension
p
2 and then the degree-2 extensionp

3 to yield the degree-4 extension Q.
p
2;

p
3/

I illustrate this in Figure 10.11, which shows all the intermediate fields between Q and

Q.
p
2;

p
3/.

The Galois group of the extension Q.
p
2;

p
3/ can be seen as all automorphisms of

Q.
p
2;

p
3/ that fix Q. The following theorem helps us find them.

Theorem 10.8. Take any polynomial irreducible over Q and any two of its roots,
r1 and r2.

1. There is an isomorphism � W Q.r1/ ! Q.r2/ that replaces every r1 with r2, but fixes
Q. For example, in a degree-2 extension, � would look like this.

�.a C br1/ D aC br2

2. This remains true if Q is replaced with any field between Q and C.

This theorem is best understood in action. Let's take stock of the irreducible poly-

nomials in our current situation. The irreducible polynomial for
p
2 is x2 � 2, and the

irreducible polynomial for
p
3 is x2 � 3. These two polynomials together have the four

roots˙
p
2 and˙

p
3. A polynomial with all four roots is .x2�2/.x2�3/, or x4�5x2C6,

but it is not irreducible; Theorem 10.8 cares about the irreducible ones.

2 2

2

2

2 2

all numbers all numbers all numbers

all numbers

Figure 10.11. Several routes from Q to Q.
p
2;

p
3/. Each line is labeled with the degree of

its extension.
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240 10. Galois theory

Theorem 10.8 is about isomorphisms, and we seek automorphisms; part (2) of the

theorem resolves that distinction. I use part (2) of the theorem to replace Q with Q.
p
3/,

and the irreducible polynomial I consider first is x2 � 2, with roots ˙
p
2. So there is

an isomorphism between Q.
p
3/.

p
2/ and Q.

p
3/.�

p
2/ that maps each a C b

p
2 to

a� b
p
2 (with a; b 2 Q.

p
3/). Of course, Q.

p
3/.

p
2/ and Q.

p
3/.�

p
2/ are both just

Q.
p
2;

p
3/, so this is one of the automorphisms we seek. Let's call it �2, because it

swaps ˙
p
2 and leaves ˙

p
3 fixed.

Applying the same theorem to Q.
p
2/ and the irreducible polynomial x2 � 3 gives

an automorphism of Q.
p
2;

p
3/ that switches ˙

p
3 and leaves ˙

p
2 fixed; call it �3.

We know enough about �2 and �3 to deduce how they treat
p
6.

�2.
p
6/ D �2.

p
2 �

p
3/ because

p
6 D

p
2 �

p
3

D �2.
p
2/�2.

p
3/ because �2 respects multiplication

D .�
p
2/.

p
3/ because �2 swaps ˙

p
2 and fixes ˙

p
3

D �
p
6

A similar set of steps can show the following two facts, about how �2 and �3 operate on

elements of Q.
p
2;

p
3/.

�2.aC b
p
2C c

p
3C d

p
6/ D a � b

p
2C c

p
3 � d

p
6

�3.aC b
p
2C c

p
3C d

p
6/ D aC b

p
2 � c

p
3 � d

p
6

Combinations of �2 and �3 generate the Galois group of Q.
p
2;

p
3/. Obviously �2

is an order-two element, since it is just a swap of two field elements, and �3 is order-two

as well. But what is their product?

�2.�3.a C b
p
2C c

p
3C d

p
6// D �2.a C b

p
2 � c

p
3 � d

p
6/

D a � b
p
2 � c

p
3C d

p
6

Continued algebra along these lines would reveal that the four automorphisms fe; �2;

�3; �2�3g are a group; its multiplication table and Cayley diagram appear in Figure

10.12. It is isomorphic to V4, and its action on the four roots is shown in Figure 10.13.

e

e

e

e

e

e

e f2

f3

f2f3

f2f3

f2f3

f2f3

f2f3

f2f3

f2f3

f3

f3

f3

f3

f3

f3

f2

f2

f2f2

f2

f2

Figure 10.12. Multiplication table and Cayley diagram for the Galois group of the extension
field Q.

p
2;

p
3/ over Q
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10.5. Galois groups 241

x

y

f2

f3

Figure 10.13. The action of V4 on the roots of x
4 � 5x2 C 6. The homomorphism  W V4 !

Perm.f
p
2;�

p
2;

p
3;�

p
3g/ specifies the action, assuming V4 D hh; vi.

Theorem 10.8, which helped us find this Galois group, raises the importance of ir-

reducible polynomials. By saying that there is an automorphism sending any root of an

irreducible polynomial to any other, it says that Q can't tell apart the roots of an irre-

ducible polynomial. In other words, setting an irreducible polynomial equal to zero is the

most specific statement we can make in the language of Q about that polynomial's roots.

10.5.5 The symmetries of Q.
3
p

2/

The final example Galois group I compute is for x3 �2. It obviously has the root 3
p
2, but

if you have tried Exercise 10.17, then you know that there are two other roots as well,

3
p
2

2

�

�1C
p
3i

�

and

3
p
2

2

�

�1 �
p
3i

�

:

I graph all three roots in Figure 10.14, and name them r1, r2, and r3 for easier writing.

x

y

Figure 10.14. The three complex roots of x3 � 2
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242 10. Galois theory

Consider Q.r1/, which is Q.
3
p
2/. We do not expect to represent every element of

this field as some aCb 3
p
2 for a; b 2 Q, because the degree of the extension is 3. Indeed,

multiplying two such elements together does not yield another.

.a C b
3
p
2/.c C d

3
p
2/ D ac C .bc C ad/

3
p
2C bd.

3
p
2/2

We also need a term for .
3
p
2/2, making the general form for elements of Q.r1/

aC b
3
p
2C c.

3
p
2/2:

Therefore Q.r1/ does not contain the roots r2 or r3, because Q.
3
p
2/ is inside the

real numbers, and neither r1 nor r2 is real. This situation is therefore quite different than

the degree-2 cases we have seen, in which adding one root of an irreducible polynomial

automatically added the other. To include all the roots of x3 � 2 requires another field

extension. I leave some of its details for Exercise 10.18, in which you are asked to verify

that

Q.r1; r2/ D Q.r1; r3/ D Q.r2; r3/ D Q.r1; r2; r3/

and that elements from this field have the six-term form

aC b
3
p
2C c.

3
p
2/2 C d

p
3i C e

3
p
2
p
3i C f .

3
p
2/2

p
3i:

This six-term expression indicates that Q.r1; r2; r3/ is a degree-6 extension of Q, and

thus a degree-2 extension of Q.r1/. The full relationship among these fields (based on

work you can do in Exercise 10.18) is shown in Figure 10.15. Even though
p
3i is not a

root of x3 �2, the Hasse diagram includes the fieldQ.
p
3i/ because

p
3i can be obtained

from r1, r2, and r3 using the operations of arithmetic. This is clear from the six-term

form above, which can yield
p
3i by letting all coefficients but d equal zero. Therefore

Q.
p
3i/ is one of the intermediate fields between Q and Q.r1; r2; r3/.

When an extension includes all the roots of an irreducible polynomial, we call it a

normal extension. Thus Q.r1/ is not normal, but Q.r1; r2; r3/ is. As we compute the

Galois group of this normal extension, we have the following useful theorem.

Q( )r1

Q

2 2 2 3

3 2

Q( )r2 Q( )r3

Q( )r3r r1, 2,

33

Figure 10.15. The relationship among extension fields of Q with roots of x3 � 2. As in Figure
10.11, each line is labeled with the degree of its extension.
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Theorem 10.9. The degree of a normal extension equals the order of its Galois group.

This theorem makes it easier to compute the Galois group of Q.r1; r2; r3/. Because

there are three roots, the Galois group (which permutes those roots) must be isomorphic

to some subgroup of S3. Theorem 10.9 says that the order of the Galois group must

match the degree of the extension, 6, and so we conclude that it must be all of S3. The

homomorphism  W S3 ! Perm.fr1; r2; r3g/ specifying how this Galois group acts on
the roots is an isomorphism. I illustrate its action in Figure 10.16.

x

y

r1

r

f

r2

r3

Figure 10.16. The action of S3 on the roots of x
3 � 2

This completes our tour of Galois groups. Now it is time to see the use to which

Galois put these tools, determining which polynomials are solvable. The following section

introduces the two central theorems of Galois theory that help us prove that there is no

formula for solving quintic polynomials by radicals.

10.6 The heart of Galois theory

Figure 10.15 is a Hasse diagram, showing relationships among field extensions of Q. We

first encountered Hasse diagrams in Section 6.6.3, when showing relationships among

subgroups. Take a moment to compare the Hasse diagram in Figure10.15 with the Hasse

diagram of the subgroups of its Galois group, S3, in Exercise 6.22 on page 112. What

relationships do you see?

The two Hasse diagrams (one of subgroups and one of field extensions) are identical

in shape, except that one of them is upside down. Applying a vertical flip to either the

field extension diagram or the subgroup diagram makes the two look identical. Will the

symmetry never stop! This same symmetry holds for the Galois group V4 that we computed

in Section 10.5.4, whose field extension diagram is in Figure 10.11. The Hasse diagram

for subgroups of V4 is in the solution to Exercise 6.23, on page 270. The vertical mirror

symmetry still holds in this case, but is a bit redundant because each Hasse diagram itself

has vertical mirror symmetry. This vertical mirror symmetry brings us to a key theorem

from Galois's work.

Theorem 10.10 (mirror theorem). The following two facts are true for any polynomial
with roots r1; r2; : : : ; rn and Galois group G.
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S3

{ }e

Every
automorphism in
the whole group
fixes .Q

Only the
automorphisms
corresponding to the
subgroup á ñ

á ñ
á ñ

f

r

rf

r r f

r

fix the

field ( ).

A similar fact could
be said about and

( ), or about

and ( ).

Q

Q

Q

1

2
2

3

Only the identity
automorphism fixes
the full extension field

.Q( , )r r r1, 2 3

Q( )r1

Q

Q( )r2 Q( )r3

Q( )r3r r1, 2,

á ñf á ñrf á ñr f2

á ñr

Figure 10.17. The vertical mirror image symmetry from Theorem 10.10 illustrated. Each

subgroup of S3 is the reflection of an extension field of Q, but not just any extension field|the

field fixed by that subgroup of automorphisms.

1. The Hasse diagram for the subgroups of G becomes identical to the Hasse diagram
of the extension fields between Q and Q.r1; : : : ; rn/ if you flip it vertically.

2. Each subgroup H < G is not only the reflection of an extension field of Q, but it is
the reflection of the exact field that the automorphisms in H hold fixed.

The second part of Theorem 10.10 requires some explanation; I exemplify it in Figure

10.17. It tells us that the symmetry of the two Hasse diagrams is not superficial, but

meaningful. We don't use groups to measure the symmetry in field extensions just because

mathematicians like patterns, but because those patterns say something about the field

extensions. In fact, the Galois group can tell us everything we need to know about the

field extension. Galois groups aren't just pretty patterns; they answer the big question.

One final theorem shows us how.

Theorem 10.11. A field extension contains only elements expressible by radicals if and
only if the following criterion holds about its Galois group G.
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There is a chain of subgroups from feg up to G, each one normal in the next,

feg C N1 C N2 C � � � C Nn C G;

and each quotient along the chain is abelian.

N1

feg
N2

N1

N3

N2

� � � G

Nn

Although this may seem like a strange condition, a few remarks may make it more

intuitive. First, it talks about a chain of subgroups between feg and G, which forms a path
through a Hasse diagram of the subgroups of G, one that corresponds (by Theorem10.10)

to a chain of field extensions between Q and the field in question. Theorem 10.11 also

requires the steps along the chain to be simple ones, from a subgroup to another in which

it is normal, and the quotient abelian. The theorem says that putting such a requirement

on the Galois group translates to an analogous requirement on the field extensions; they

cannot be too complex either. Specifically, the theorem guarantees that the corresponding

field extensions only add numbers expressible by radicals.

Because of the connection to polynomials, we call groups that fit the criteria of

Theorem 10.11 solvable groups. Any abelian group G is solvable, because the tiny chain
feg C G satisfies Theorem 10.11; G

feg is abelian. Also, we've computed the Galois groups
of two solvable polynomials already. So we expect both those groups (V4 and S3) to be

solvable. The group V4 is solvable because it is abelian. The group S3 has a normal sub-

group hri that is abelian, so the following chain of normal subgroups shows its solvability.

feg C hri C S3

Both quotients
hri
feg Š C3 and

S3

hri Š C2 are abelian groups. In Figure 10.18 I highlight

this chain of subgroups as a path through the Hasse diagram of subgroups of S3, and

label the corresponding quotients. The same evidence can be visualized in greater detail

using homomorphisms, as in Figure 10.19, which shows the embedding of feg into hri
and the corresponding abelian quotient

hri
feg , as well as the embedding of hri into S3 and

the corresponding abelian quotient S3

hri .

{ }e

S r, f3 = á ñ

2

á ñr

{ }e

S3

á ñr
@ , abelianC2

á ñr

322

3 3 3
2

á ñrf á ñr f2á ñf

@ , abelianC3

Figure 10.18. The path through the subgroup diagram of S3 demonstrating its solvability. Each

step goes from a subgroup up to another in which it is normal with abelian quotient.
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f

rf

r2

e

r

0 1

r

e

0

2

e

{ }e

embedding

C3, abelian

S3

embedding

C2, abelian

quotient map quotient map

r f2

á ñ @r C3

1

r2

Figure 10.19. Solvability of S3 illustrated, using feg C hri C S3. The chain feg C hri C S3

appears across the top of the diagram, and the corresponding quotients are below.

{ }e

V4

C6

Q4

G

G

Q4

= C3, abelian

Q4

C2

= V4, abelian

C2

{ }e
= C2, abelian

C6 C6 C6

C3C3 C3 C3

V4 V4

C2

Figure 10.20. The solvability of the smallest group requiring a three-step chain of normal

subgroups between feg and the full group of order 24. I name the subgroups by groups to which
they are isomorphic, rather than define G in terms of generators. The chain feg C C2 C Q4 C G

does not include a subgroup isomorphic to V4, but passes directly from C2 to Q4.
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The solvability of larger groups sometimes requires a longer chain of subgroups, but

the smallest such group is of order 24. The corresponding diagram of homomorphisms is

too tangled to be enlightening, but the path through the Hasse diagram appears in Figure

10.20. In fact, solvable groups are actually very common; it's the unsolvable ones that
are hard to find. And that's what's left to do.

Armed with Galois's classification of which polynomials are solvable, we need to

do what Abel did, find one specific unsolvable quintic polynomial. We need a quintic

polynomial with roots r1 through r5 such that the Galois group of Q.r1; : : : ; r5/ is not

solvable. This is a job that requires mostly group theory, so let's leverage our knowledge

of group theory to see how this story ends.

10.7 Unsolvability

We need an unsolvable group that describes the symmetries among the roots of some

quintic polynomial. Those symmetries will form a subgroup of S5, because we can view

them as permutations of the five roots. A systematic search through S5 yields many

subgroups, and Exercise 10.26 asks you to show that all of them are solvable, except one.

The smallest non-solvable group is one with no normal subgroups at all, A5.

10.7.1 An unsolvable group

In Section 7.5, analyzing the conjugacy classes of A4 revealed its only normal subgroup.

I now analyze the conjugacy classes of A5 to show that it has no normal subgroups.
We learned in Chapter 5 that A5 has order 60, so we seek a class equation with 60 on

the left and a sum of sizes of conjugacy classes on the right. Knowing that the identity

element is in a conjugacy class by itself, we begin with this equation.

1C [some partition of the other 59 elements]D 60

Figures 5.26 and 5.29 showed that A5 is the group of symmetries of the icosahedron and

the dodecahedron. I use the symmetries of the icosahedron to provide the words and images

for describing conjugacy classes inA5 (though the dodecahedron would work just as well).

The icosahedron permits a one-fifth clockwise turn around any one vertex, as shown

in Figure 10.21. (To be specific, the axis of rotation is the line through the vertex and

the icosahedron's center.) The icosahedron has 12 vertices, so there are 12 such rotations.

Figure 10.21. The icosahedron permits a one-fifth turn about any vertex.
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They are conjugate to one another just as are the rotations of the tetrahedron, illustrated

in Figure 7.33. I do not make a similar illustration here to prove it, because it would

involve labeling all the icosahedron's vertices. It should be clear that the simple idea in

Figure 7.33 can be transferred to the icosahedron. This updates our class equation with a

conjugacy class of order 12.

1C 12C [some partition of the other 47 elements]D 60

Another 12 elements can be found by considering the squares of the same one-fifth

turns, which are therefore two-fifths turns. They are all conjugate for the same reason

that the one-fifth turns are, bringing the class equation to

1C 12C 12C [some partition of the other 35 elements]D 60:

But considering the cubes of the one-fifth turns (the three-fifths turns) produces no

new elements. A three-fifths clockwise turn is a two-fifths counterclockwise turn, and
so a three-fifths turn about a vertex is the same as a two-fifths turn about the vertex on

the opposite side of the icosahedron. Similarly, a four-fifths turn is just a one-fifth turn

about the opposite vertex. So all the actions that involve rotating around a vertex have

been counted in the two 12-element conjugacy classes.

The icosahedron also permits rotations about the center of each face, as shown in Fig-

ure 10.22. The axis of rotation is the line through the face's center and the icosahedron's

center. Each of these one-third clockwise turns is another element of A5, and they are

all conjugates for the same reason that the one-fifth turns were. The icosahedron has 20

faces, giving a new conjugacy class of 20 elements, and updating our class equation to

1C 12C 12C 20C [some partition of the other 15 elements]D 60:

Since we have only 15 elements left to classify, clearly the two-thirds turns of each face

do not form another 20-element conjugacy class. This is because a two-thirds turn is the

same as a one-third turn of the opposite face, so we have already counted them.

The icosahedron allows a one-half turn about the axis through the center of any edge

and the icosahedron's center, as shown in Figure 10.23. However, a one-half turn about

any edge is the same as a one-half turn about the opposite edge, so the 30 edges yield only

15 distinct group elements. These elements are conjugates, making the final class equation

1C 12C 12C 20C 15 D 60:

I use this class equation to show that A5 has no normal subgroups.

Figure 10.22. The icosahedron permits
a one-third turn of any face.

Figure 10.23. The icosahedron permits
a one-half turn that flips any edge.
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A normal subgroup's order must be a sum of sizes of conjugacy classes. Furthermore,

we must ensure that the identity element is present if we hope to form a subgroup. Thus

the only sizes achievable are these.

All classes, the whole group Four conjugacy classes

1C 12C 12C 15C 20 D 60 1C 12C 15C 20 D 48

1C 12C 12C 20 D 45

1C 12C 12C 15 D 40

Three conjugacy classes Two conjugacy classes One conjugacy class

1C 15C 20 D 36 1C 20 D 21 1 D 1

1C 12C 20 D 33 1C 15 D 16

1C 12C 15 D 28 1C 12 D 13

1C 12C 12 D 25

But most of these totals do not describe subgroups, because they do not divide the order

of the group, which is 60. The only totals from this list dividing 60 are 1 and 60, the

normal subgroups feg and A5, which we knew were there before we began. Thus no

other normal subgroups exist.

The only chain of normal subgroups between feg and A5 is therefore the short one

feg C A5, which does not meet the requirement that
A5

feg be abelian. The group A5 is

not solvable. Furthermore, no group containing A5 can be solvable, because the smallest

first step in any chain of normal subgroups in such a group would be the invalid step

feg C A5. Thus S5, S6, S7, and so on are all unsolvable groups.

10.7.2 An unsolvable polynomial

Our question narrows to this: Does any quintic polynomial have roots whose Galois group

contains A5? I have already claimed that this is so for the polynomial x
5 C 10x4 � 2.

From my analysis of this polynomial, you will see that it is easy to create others like it,

and Exercise 10.28 gives you the opportunity to do so. Let's see why x5 C 10x4 � 2 is
unsolvable.

It is irreducible by the Eisenstein Criterion (Theorem 10.4), using p D 2. Call its

five roots r1 through r5. Then Q.r1/ is a degree-5 extension because the polynomial has

degree 5. Perhaps it is a normal extension, and equal to the field Q.r1; r2; r3; r4; r5/, or

perhaps it is not, and Q.r1; r2; r3; r4; r5/ is much larger. But the degree of the extension

Q.r1; r2; r3; r4; r5/ is either 5 or some multiple of 5, because Theorem 10.7 says

ŒQ.r1; r2; r3; r4; r5/ W Q� D ŒQ.r1; r2; r3; r4; r5/ W Q.r1/� � ŒQ.r1/ W Q�

D ŒQ.r1; r2; r3; r4; r5/ W Q.r1/� � 5:

Because it is a normal extension, the order of the Galois group of Q.r1; r2; r3; r4; r5/

matches the extension's degree, some multiple of 5. Now group theory begins to help us.

Cauchy's Theorem guarantees that the Galois group contains an element of order 5.

That element permutes the five roots, and the only permutations of order 5 in S5 are
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cycles of the five roots, like this example.

r1 r2 r3 r4 r5

The Galois group must also contain the complex conjugacy automorphism, as all

Galois groups do. How this automorphism permutes the five roots depends on how many

of those roots are real numbers. We can find the number of real roots by graphing the

polynomial on a calculator or computer, giving a plot like the one on the left of Figure

10.24. It shows three points on the real number line where the polynomial equals zero,

meaning three roots are real and two are complex. If you prefer to reason out this fact

without using technology, see Exercise 10.27.

x

y

– 8 0

5000

– 5000

x

y

– 9 9998. 0 6582.

0 0111 + 0 6681. . i

0 0111 –. 0 6681. i

– 0 6806.

Figure 10.24. On the left, the graph of x5 C 10x4 � 2 shows that it has exactly three real

roots, and therefore two complex ones. On the right, those five roots are plotted, and decimal

approximations of their values given.

By Theorem 10.3, these two non-real roots must be conjugates, so the complex con-

jugacy automorphism swaps them. It corresponds to a permutation like this one.

r1 r2 r3 r4 r5

Although we only know two of the permutations in the Galois group, it is enough. The

work of Exercise 7.32 proves that a subgroup of S5 containing two permutations like

these (a five-cycle and a transposition) must be all of S5. So this Galois group does

indeed contain A5. We have found an unsolvable Galois group! By Theorem 10.11, the

polynomial is unsolvable as well. On the right of Figure 10.24 I plot the five roots of

x5 C10x4�2, but their values are given only approximately. I cannot write them precisely
with radical notation because the polynomial is not solvable by radicals.

10.7.3 Conclusion

You now have a good idea why x5 C 10x4 �2 is unsolvable, and therefore have a deeper
appreciation of both the big question and its answer. Of course, I gave several facts

from field theory without proof, so I cannot say that you know every detail of why the

polynomial is unsolvable. But we have seen the beautiful and famous relationship between
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groups and fields from Theorems 10.10 and 10.11, and how group theory marshals the

ideas of field theory to this historical result.

The group A5 turned out to be central to the answer to the big question. Figure 10.25

is a larger version of a Cayley diagram of A5 from Figure 5.29. A close look shows hints

of the group's unsolvability all over the diagram; all visible subgroups look quite non-

normal. For instance, consider the cyclic subgroup of order 5 generated by a red arrow.

If that subgroup were normal, then all blue arrows leaving one of its cosets would go

to another coset. But the complete opposite is true|each blue arrow goes to a different

coset! This same fact is true about the order-3 subset obvious in the other Cayley diagram

of A5 in Figure 5.29, also generated by a red arrow. All the visible subgroups of A5 are

as far from normal as they can be.

This makes the Cayley diagram very interconnected, and gives it a certain appearance

of stability. Each cycle is linked to as many others as possible, a feature that makes

physical structures strong. This is not just appearance; carbon atoms in nature can bond

in a structure just like the Cayley diagram in Figure 10.25, forming the molecule Carbon-

60. This structure is called a fullerene, named after architect Richard Buckminster Fuller,

who designed geodesic domes in a similar style.

Figure 10.25. A Cayley diagram for A5, showing its thorough interconnectedness

So in place of the details from field theory, I show you the structure on which the

unsolvability of the quintic rests, the group A5. And you've seen it in a way that Abel

and Galois probably never did!

The unsolvability of polynomials shows us that groups are essential for understanding

the relationships among the most basic operations of algebra. We have seen both the

beauty and the utility of studying abstract patterns like groups. If you are interested in

learning more about structures like fields, I encourage you to try textbooks such as [1],

[8], or [9]. Two other books that do an excellent job of keeping the historical roots of

field theory clear of modern debris are [6] and [11]. The latter is aimed at a broader

audience than the former. Other books I find useful appear in the Bibliography.



\master" | 2011/10/18 | 17:10 | page 252 | #266
i

i

i

i

i

i

i

i

252 10. Galois theory

10.8 Exercises

10.8.1 Basics

Exercise 10.1. For each of the following criteria, give an example number that satisfies it.

(a) a number in N

(b) a number in Z but not N

(c) a number in Q but not Z

(d) a number in R but not Q

(e) an algebraic number not in R

(f) a number in C that's not algebraic

(g) a number in C that's not algebraic nor in R

Exercise 10.2. Simplify each of these complex-number expressions.

(a) .12C i/.3 � i/
(b) 2i.1C i C i3/� 9

Exercise 10.3. Identify which of the following statements are true and which are false,

and explain why.

(a) Saying a polynomial is \solvable" means that it has solutions.

(b) Every quartic polynomial is solvable.

(c) Every quintic polynomial is solvable.

(d) No quintic polynomial is solvable.

(e) Every sextic (degree 6) polynomial is solvable.

(f) No sextic polynomial is solvable.

(g) Because every Galois group contains the complex conjugacy operation, every Galois

group has even order.

(h) Every polynomial x2 � a (for a > 0 in Q) is irreducible.

(i) The Eisenstein Criterion can never be used to conclude that a polynomial is factorable.
It only tells us when a polynomial is not factorable.

(j) If a quintic polynomial factors over Q, then it is solvable.

(k) Every Galois group is finite.

(l) Every algebraic number is a real number.

(m) Every real number is an algebraic number.

Exercise 10.4. I say in the text that any equation made from the operations of arithmetic

can be simplified to a polynomial equal to zero. The following simplification procedure

supports my claim.

1. If needed, subtract to move the right side over to the left, leaving just zero on the

right.
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2. Combine fractions until the left-hand side contains at most one fraction. (More on this

step below.)

3. Multiply both sides of the equation by the fraction's denominator, leaving a polynomial

equal to zero.

Answer the following questions to show that the above procedure works.

(a) Consider the equation x�1

xC 1
x

D 2. Applying step 1 yields x�1

xC 1
x

� 2 D 0, and step 2

then yields � x2C3x
x2C1

D 0. Explain how step 2 was applied (that is, show the steps).

(b) In general, if step 1 results in two fractions subtracted, how should they be combined?

What other algebra steps may be needed to get a large, complicated expression down

to containing at most one fraction?

(c) What might equations from algebra that contain at most one fraction look like? Why

does step 3 always turn them into polynomials?

(d) What equation results if we apply step 3 to the expression from part (a)?

(e) Explain how any polynomial equation whose coefficients are rational numbers can be

turned into one with only integer coefficients. Test your method on 2
9
x7� 11

8
xC 1

2
D 0.

Exercise 10.5. Prove the missing step in Theorem 10.3, that

.a C bi/.c C di/ D .a C bi/.c C di/:

Exercise 10.6. Dividing polynomials is like dividing whole numbers. For example, to

divide 2x3 � 6x C 5 by x � 4, we set up a division problem like this.

Notice that I've included all powers of x, even those whose coefficients are zero. Pro-

ceeding as with division of whole numbers, we ask what polynomial can be multiplied by

x � 4 to give the leading term 2x3. The answer is 2x2, so I put that at the beginning of

the answer (on top), multiply it by x � 4, and subtract, as in division of whole numbers.

Note that subtracting�8x2 is the same as adding 8x2. Then bring down�6x and continue
the procedure. The final result is shown here.
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The remainder 101 is expressed in the answer as follows.

.2x3 � 6x C 5/� .x � 4/ D 2x2 C 8x C 24C 101

x � 4

Solve the following polynomial division problems. The solutions for the first two are

available in the back of the book.

(a) x3�1
x�1

(b) .76x7 C 20x6 � 38x4 � 10x3 C 2/� .4x6 � 2x3/

(c) .x5 � 1/� .x � 1/

(d) 9x3�7x2C16x�10
x2C2

(e) xn�1
x�1

(f) Factor the lower right polynomial in Figure 10.6 into irreducible polynomials.

(g) If a division (such as part (d)) does not come out even, but has a remainder, does

that make the polynomial irreducible?

Exercise 10.7. Discern whether the following polynomials are irreducible. For those that

are reducible, factor them.

(a) x2 � 14x C 51

(b) 60x2 C 50x � 10
(c) 9x3 � 36x2 C x � 4

10.8.2 Fields and extensions

Exercise 10.8. This exercise shows that the complex numbers C, containing all numbers

aC bi , for a; b 2 R, form a field, and explores arithmetic in that field.

(a) What is the sum .a C bi/ C .c C di/ of two complex numbers, written in a C bi

form?

(b) What is the product .a C bi/.c C di/ of two complex numbers, written in a C bi

form?

(c) The additive inverse of any aC bi is clearly �a � bi , which is obviously in the set
C. The multiplicative inverse of aC bi , however, is 1

aCbi
, and it is not obvious that

this number is in C. Prove that it is.

(d) Write all the following powers of i in aC bi form.

i i2 i3 i4 i5

(e) The number in is equal to

when n � 0 mod 4,

when n � 1 mod 4,

when n � 2 mod 4,

and when n � 3 mod 4.
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(f) Show that
p
i is the element

p
2

2
C

p
2

2
i from C, by showing that the result of squaring

that element is i .

Exercise 10.9. This exercise proves several claims from the text about Q.
p
2/. I claimed

that the set of elements aC b
p
2 for a; b 2 Q is the smallest field containing Q and

p
2.

(a) Show that addition, .a C b
p
2/C .c C d

p
2/, produces a new element of the same

form.

(b) Show that multiplication, .aC b
p
2/.cCd

p
2/, produces a new element of the same

form.

(c) What is the additive inverse of aC b
p
2?

(d) What is the multiplicative inverse of a C b
p
2?

(e) Show that no a C b
p
2 can equal

p
3, by simplifying .a C b

p
2/2 D 3 and finding

no solutions. Recall that
p
2 and

p
3 are irrational.

(f) Show that no a C b
p
2 can equal

3
p
2, by simplifying .a C b

p
2/3 D 2 and finding

no solutions. Note that
3
p
2 is irrational.

Exercise 10.10. In Sections 10.5.1 and 10.5.2, I analyzed Q.
p
2/, giving the formula

aC b
p
2 for a typical element and computing its Galois group.

(a) Do a similar analysis for Q.
p
3/.

(b) Is Q.
p
3/ inside Q.

p
2/? Is Q.

p
2/ inside Q.

p
3/?

(c) Is Q.
p
3/ inside Q.

p
2;

p
3/?

Exercise 10.11. I say in the text that Q.
p
2/.

p
3/ D Q.

p
3/.

p
2/, and that it is a field

whose elements have the form a C b
p
2C c

p
3C d

p
6. This exercise asks you to give

the evidence for this claim.

(a) Show that all four terms are necessary to express elements of Q.
p
2/.

p
3/.

(b) Show that the set of all such terms is closed under addition and contains the additive

inverse of each of its elements.

(c) Show that it is also closed under multiplication and contains each element's multi-

plicative inverse.

(d) Show that Q.
p
6/.

p
2/ D Q.

p
6/.

p
3/ D Q.

p
2;

p
3/.

Exercise 10.12. Theorem 10.5 can be proven in two steps, the first of which is much

harder than the second. I give both steps here, and ask you to prove the second. If you

like a challenge, try proving the first as well.

First, show that every element of Q.r/ can be written as some

c0 C c1r C c2r
2 C � � � C cnr

n;

with each ci 2 Q.

Second, show that n is always less than the degree of the polynomial for which r is

a root.
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Exercise 10.13.

(a) Make a diagram like Figure 10.17 for the field extensionQ.
p
2/ and its Galois group,

which is isomorphic to C2.

(b) Make a diagram like Figure 10.17 for the field extension Q.
p
2;

p
3/ and its Galois

group, which is isomorphic to V4.

Exercise 10.14. Compute the Galois group of Q.i/ as an extension of Q.

Exercise 10.15. Recall the function � W Q.
p
2/ ! Q.

p
2/ from Section 10.5.3, defined

by �.a C b
p
2/ D a � b

p
2.

(a) Show that it is a field automorphism, meaning that it satisfies the following two

equations.

�.a C b/ D �.a/C �.b/ �.a � b/ D �.a/ � �.b/

(b) Explain why it fixes Q.

Exercise 10.16. Explain why the Galois group of any irreducible quadratic polynomial

is isomorphic to C2.

Exercise 10.17. Every polynomial xn � a (for a > 0 in Q) has the solution n
p
a in the

positive real numbers. But it actually has n � 1 other solutions as well, most of which

are not real numbers.

I define the function c W R ! C by c.�/ D cos.�/ C i sin.�/. This function gives

the point in the complex plane that is one unit distant from .0; 0/ in the direction of the

angle � , as shown here.

x

y

1–1

i

– i

cos( )q

sin( )q

c( )q

q

(a) Use the trigonometric identities

cos.˛ C ˇ/ D cos ˛ cos ˇ � sin˛ sinˇ
and sin.˛ C ˇ/ D sin˛ cos ˇ C cos˛ sinˇ

to prove that c.˛/ � c.ˇ/ D c.˛ C ˇ/.
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(b) Explain why c is a homomorphism from the group R under addition to the group C

under multiplication. Is it an embedding or a quotient map?

(c) What is c.˛/n?

(d) Let r1 D 3
p
2, r2 D 3

p
2 c.2

3
�/, and r3 D 3

p
2 c.4

3
�/. Compare these values to those

in Section 10.5.5.

(e) Prove that if r D n
p
a, then every n

p
a c.k

n
� 2�/ is also a root of xn � a, for any

natural number k. (Assume a > 0 in Q.)

(f) Consider the group of roots of x6 � 1 under the operation of multiplication. To what
group is it isomorphic? What elements generate it?

(g) Consider the group of roots of xn � 1 under the operation of multiplication. To what
group is it isomorphic? What elements generate it?

Exercise 10.18. Section 10.5.5 analyzed Q.r1/, finding the expression for a typical

element and computing the Galois group.

(a) Do the same for Q.r2/. What are the similarities and differences?

(b) Do the same for Q.r3/. To which of Q.r1/ or Q.r2/ is it more similar, and how?

(c) Show that the expression for elements of Q.r1; r2; r3/ is the six-term one given in

Section 10.5.5, by analyzing Q.r1/.r2/, Q.r1/.r3/, or a similar field.

(d) For each of the irrational numbers that appears in that six-term form, find its irre-

ducible polynomial over Q, and the smallest extension field of Q containing it.

(e) Arrange all the fields you found into a Hasse diagram.

Exercise 10.19. Use the irreducible polynomials you found in Exercise 10.18 to create

the Galois group of Q.r1; r2; r3/ as a group of automorphisms (using Theorem 10.8).

Write each as a function operating on a typical element of Q.r1; r2; r3/, as in

�.a C b
3
p
2C c.

3
p
2/2 C d

p
3i C e

3
p
2
p
3i C f .

3
p
2/2

p
3i/

D aC b
3
p
2C c.

3
p
2/2 � d

p
3i � e 3

p
2
p
3i � f . 3

p
2/2

p
3i:

Specify the isomorphism  mentioned in Section 10.5.5, between S3 and this Galois

group.

Exercise 10.20. Which path of field extensions betweenQ and Q.r1; r2; r3/ corresponds

to the solvable sequence for S3? Why did I not create Q.r1; r2; r3/ along this route in

the chapter?

Exercise 10.21. Prove that if � is an automorphism of any field extending Q (and thus

� respects addition and multiplication), then � fixes Q.
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10.8.3 Polynomials and solvability

Exercise 10.22. Find the irreducible polynomial for each of the following algebraic

numbers.

(a)
p
15

(b)
5
p

1C
p
2

(c)
p
10C

p
11

(d)
3
p
2C 10

Exercise 10.23.

(a) Create a polynomial with these four roots.

x

y

1 + 3i

1 + 2i

1 – 3i

1 – 2i

(b) Is it irreducible?

(c) What is its Galois group?

(d) Write an equation of arithmetic that distinguishes the inner two roots from the outer

two.

Exercise 10.24. Consider the cubic polynomial on the top right of Figure 10.6.

(a) Write an equation of arithmetic that distinguishes one of its roots from the other two.

(b) Can an equation of arithmetic distinguish one of the roots of x3 � 5 from the other

two?

(c) Compute the Galois group of the polynomial in part (a).

Exercise 10.25. Given the roots r1, r2, and r3 of x
3 �2 defined in Section 10.5.5, recall

the non-normal extension Q.r1/ of Q, and the normal extension Q.r1; r2; r3/. In the text

we found that ŒQ.r1; r2; r3/ W Q� D 6 and ŒQ.r1/ W Q� D 3, so it must be the case that

ŒQ.r1; r2; r3/ W Q.r1/� D 2. Find the corresponding degree-2 polynomial with coefficients

from Q.r1/ whose two roots are r2 and r3.
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Exercise 10.26. Every subgroup of S5 (except A5) is isomorphic to one of the following

groups. Show that each is solvable.

Cyclic groups: C1, C2, C3, C4, C5, C6

Dihedral groups: D2 (which is V4), D3 (which is S3), D4, D6

Other groups: A4 (Cayley diagrams for which appear in Exercise 4.6 and Figure 5.27),

a 20-element group whose Cayley diagram appears on the left of Exercise 5.15, and the

24-element group whose Cayley diagram appears below.

00

02

20

1034

24

11

23

1333

01

21

35

25

30

04

12

22

31

03

15

05

32 14

Exercise 10.27. How can calculus be used to show that there are three real and two

imaginary roots of x5 C 10x4 �2? Hint: Set the derivative equal to zero to find the peaks
and valleys in the curve.

Exercise 10.28. Create irreducible polynomials of degree 5, as assigned here.

(a) Make one with only one real root.

(b) Make one with exactly three real roots.

(c) Make one with five real roots.

(d) Are any of the polynomials you created unsolvable?

10.8.4 Finite fields

Exercise 10.29. Here are diagrams of the finite fields of orders 5 and 8. Each is shown

as two Cayley diagrams overlaid on the same set of nodes; the solid arrows are the Cayley

diagram for addition, and the dashed ones are the Cayley diagram for multiplication. The

diagrams for multiplication do not include zero.
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0

3

6

7

4

2

5

3

0

1

1

2

(a) Are the addition and multiplication operations in finite fields addition and multipli-

cation mod some number?

(b) There is never more than one finite field of a given order. Create the Cayley diagrams

for the finite fields of orders 3, 4, 7, and 11.

Exercise 10.30. Why can the group C4 under addition not be made into a finite field

by overlaying a multiplicative structure on f1; 2; 3g? Why do C6 and C15 have the same

problem?
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Answers to selected Exercises

Chapter 1. What is a group?

Exercise 1.1. It is a group, as follows.

Rule 1.5 is satisfied because the problem specified a predefined list of actions that

contained just one action.

Rule 1.6 is satisfied because swapping two things back is the same as swapping them
in the first place.

Rule 1.7 is satisfied because swapping two things has a very predictable outcome.

Rule 1.8 is satisfied because any sequence of swaps is possible; swapping the two

coins 100 times doesn't prevent you from doing it again, or 100 more times.

Exercise 1.3. It is not a group. Rule 1.8 is not satisfied; you cannot chain together any

sequence of moves you like. If you try to move marbles from your left pocket to your

right pocket twenty times in a row, you will find that it is not possible.

Exercise 1.5. No, it does not, as we can clearly see by the fact that we have encountered

several finite groups already! But more to the point, although Rule 1.8 requires that any

combination of actions be an action, it does not require that it be a new action. For the
group in Exercise 1.1, for instance, there are infinitely many action sequences we could

list, \swap the coins once," \swap the coins twice," \swap the coins three times," etc.,

but that long, infinite list really only contains two different things. Swapping the coins
once produces the same result as swapping them three times, so we do not consider them

different actions in the group. Swapping the coins twice or four times has the same result

as not swapping them at all.

Exercise 1.7.

(a) Swapping the coins twice in a row is equivalent to the action \doing nothing."

(b) Every group will have such an action, because every action is reversible, and thus

any action can be combined with its reversal to produce an action that does nothing.

261
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Exercise 1.10. Many answers are valid here; this one is an example. Consider the list

of actions containing only one thing, this action: Light a match and let it burn out.

Assuming we're doing this with reliable matches in a controlled environment, the result

is predictable. Assuming matches will continue to be manufactured indefinitely, you can

do as many of this action in a row as you like. But it's definitely not reversible.

Exercise 1.12. Many answers are valid here; one example is the situation described in

Exercise 1.3.

Chapter 2. What do groups look like?

Exercise 2.1. The two generators are the horizontal flip and vertical flip. The other actions

in the puzzle are the non-action (do nothing) and the combined action \horizontal flip

then vertical flip."

Exercise 2.3. Arrows that point from a node to itself represent the non-action. Typically

such arrows are not included in the diagram, since they add clutter, but not any useful

information.

Exercise 2.4.

1¢ 1¢5¢ 5¢
swap coins

Exercise 2.8.

(a) This group is called D4, and there are several ways to represent it with a Cayley

diagram. Here is one.

(b) The moves in the rectangle puzzle are restricted by the shape of the rectangle

itself. Each move returns the rectangle to the same area it originally occupied, with just

the label numbers different. Rotating a rectangle (that isn't a square) one quarter-turn

clockwise does not keep it in the same area, but rotating a square a quarter-turn does.

I was asking you to think ahead a bit with that question; I don't introduce those

reasons in the text until Chapter 3.

Exercise 2.9.

(a) (b) (c)

In both parts (b) and (c), the diagram shows that the generators drawn are sufficient

because the diagram is connected. (From any one location, you can get to any other.)
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Exercise 2.12. The following is one example answer; it represents the cycle of activities

for a typical newborn baby.

sleep

eat cry

Exercise 2.13. The generators have the special status of being represented by the diagram's

arrows. (And like all other elements of the group, the generators are also represented as

nodes.)

Exercise 2.15. If following arrows in a diagram corresponds to doing actions, then fol-

lowing arrows backwards corresponds to undoing the actions. So in order for us to be

able to follow arrows backwards in a diagram, we cannot have two arrows of the same

type pointing to the same destination from two different sources. For instance, in the

following diagram, it is not clear how to undo the action of the solid black arrow when

in configuration C. Should you go to A or to B?

A

B

C

Exercise 2.17. It guarantees that from every point on the map, there will always be an

arrow of each type leaving that point. This can be verified by considering what it would

be like if it were not true; let's say we had some point P on our map that was lacking

an outbound arrow corresponding to some action A. Then the sequence of moves leading

from the start to P followed by action A would be invalid, which Rule 1.8 forbids.

Chapter 3. Why study groups?

Exercise 3.6. In the Cayley diagram in Figure A.1, the arrows labeled \1
4
turn" mean a

quarter turn as if you had twisted the white molecule on top clockwise, spinning the atom

around the vertical axis.

Exercise 3.8. A solution to this problem is not provided, but here is a hint. You may

find it easier to explore the molecule's symmetry group if you know that it has the same

symmetries as a regular pentagon. (Think of laying a pentagon flat with its center at the

center of the molecule, each of its five corners half way between two of the purple atoms,

vertically. Just as the molecule can be spun or flipped, so can the pentagon, and vice

versa.)

Exercise 3.11. The solution to part (d) is shown in Figure A.2. It is a pattern that repeats

vertically in blocks of four; each block of four is a little Klein 4-group, like the group of

the rectangle puzzle from Chapter 2. The curved arrows represent the action of sliding

the pattern to the right by the width of one leaf.
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1

23

4

2

34

1

3

41

2

4

12

3

1
4

turn

1
4

turn 1
4

turn

1
4

turn

Figure A.1.
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vertical flip vertical flip

Figure A.2.
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The particular numbering scheme you used is unimportant; it need not be exactly like

mine. But of course, you must label each of the four corners of each leaf, since they are

all alike.

Exercise 3.13.

(a) The following Cayley diagram shows the group generated by the contra dance

figure called \Circle right." Note that the dancers are moving to their own right sides,

which from our point of view means they move counterclockwise.

dancers circle rightdancers circle right

dancers circle right dancers circle right

Figure A.3.

Rather than moving the dancers around the square, as in the diagram above, I could

have drawn each square with the dancers in their original position, but with arrows to

show where they would end up. This makes it easier to see how repetitions of the \Circle

right" figure can yield other figures, and therefore makes it easier to answer the second

part of this question. Figure A.4 does so.

(b) It contains the \Right and left through," as well as two other figures not shown in

Figure 3.15. One of those figures doesn't look very interesting, because the dancers don't

change positions at all. But keep in mind that these illustrations only show the results of

the figures, not the steps taken during them; a figure may be interesting to watch or to

dance, even though it does not result in a shuffling of the dancers at its end.
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dancers circle rightdancers circle right

dancers circle right dancers circle right

Figure A.4.

Chapter 4. Algebra at last

Exercise 4.5.

(a) Beginning at the element x in the diagram, follow a red arrow twice. Each red arrow

represents one multiplication on the right by a, so this computes x � a � a, or x � a2.

(b) From Exercise 4.4 we learned that k D j � i , which is performed by following the j
arrow (blue) and then the i arrow (red). So to multiply x � k, begin at the node for x
and follow a blue arrow and then a red one.

Exercise 4.10(a). Hint: Check associativity of A � A � B .

Exercise 4.13(a). The operator is not associative, as the following computation demon-

strates.

4 � .3 � 2/ D 4 � 1 D 2 ¤ 4 D 2 � 2 D .4 � 3/ � 2

Exercise 4.14. The element s appears in the table, but is not in the row or column

headings. Is it in the group or isn't it?

Exercise 4.17. Hint: It may help to consider a specific example. Why can the following

two-piece diagram not be viewed as one Cayley diagram for an eight-element group?

Which part of Definition 4.2 would be violated?
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a b

c d

e f

g h

(Note that you could add arrows to make it a Cayley diagram, but as is, it is not one.)

Exercise 4.18. It leads you to conclude that a group can have only one identity element.

Exercise 4.19. Hint: For this exercise and those that follow it, use the fact from Exercise

4.15 liberally. The answer to part (a) is shown here.

0 1

0

0

1 0

1

1

Exercise 4.22. Order matters in S3, and the two groups shown in the bottom row, but

order does not matter in the other three groups shown in that figure.

Exercise 4.23. S3

Exercise 4.24. Read on to Chapter 5 to find out!

Exercise 4.26(a). e�1 D e, a�1 D a4, .a2/�1 D a3, .a3/�1 D a2, and .a4/�1 D a.

Exercise 4.27(a).

a3x D a2

.a3/�1a3x D .a3/�1a2

x D a4

Exercise 4.32(b). No, none of the elements except 1 and �1 have inverses.

Exercise 4.33.

(b) No, one element is missing an inverse. Which is it?

(g) Hint: The answer is not just that they are infinite. After all, we've seen Cayley

diagrams and multiplication tables for infinite groups illustrated using representative finite

portions.

Chapter 5. Five families

Exercise 5.6(c).

e r f

e

e

r e fr

r

r

f e r

f

f

f r r e

f r

f r

fr

f

f r

f
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Exercise 5.9. If we view An as all the squares of elements from Sn, then squaring the

one permutation in S1, the identity, gives back that same permutation. Therefore A1 D S1

and so the order of both is 1.

Exercise 5.20. The group of order 1 is in several of these families; it is C1, S1, and A1.

The group of order 2 is in several of these families; it is C2, S2, and D1.

The group of order 3 is in two of these families; it is both C3 and A3.

The non-abelian group of order 6 is in two of these families; it is both S3 and D3.

Exercise 5.23. Answers will vary; for instance, the blade on a blender, some windmills.

Exercise 5.24. Answers will vary; for instance snowflakes and stars, like those shown

on the left below, and truncated polygons, like those shown on the right below.

It is interesting to note that if we take Dn to be the group of symmetries of the truncated

n-gon, then it is natural to make D2 a long, tall rectangle, which is appropriate.

Exercise 5.28.

Exercise 5.30(a).

–3 –2 –1 0 321… …

Exercise 5.31. See the Frieze group in Figure 3.13.

Exercise 5.35(a). If the equation a � b D c is true in a group, then in a Cayley diagram

for that group, starting at the node for the element a and following the arrow(s) for the

element b will end up at the node for the element c. In short, from a doing b arrives at

c.

Exercise 5.38. Hint: Show that ab D ba based on the facts a2 D e, b2 D e, and

.ab/2 D e.
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Exercise 5.40(a).

e

f

r2

fr3 fr rr3

fr2

Exercise 5.43(c). Hint: Square every element of S4.

Exercise 5.44(a). Hint: Check your results against the first 12 values of n from the table

below. The table covers values of n from 1 to 20, and m is the smallest value such that

a copy of Cn exists in Sm. But finding the pattern is difficult from the numbers alone;

computing the embeddings themselves will probably be more fruitful.

n m n m n m n m

1 1 6 5 11 11 16 16

2 2 7 7 12 7 17 17

3 3 8 8 13 13 18 11

4 4 9 9 14 9 19 19

5 5 10 7 15 8 20 9

Chapter 6. Subgroups

Exercise 6.1. The rightmost one is a Cayley diagram of the group C6, reorganized to

use generators 2 and 3. The leftmost one satisfies all requirements except for regularity;

the blue arrows do not behave the same everywhere. The remaining diagram lacks blue

arrows exiting either of the nodes in its bottom row.

Exercise 6.3(a).

e

a2 a

Exercise 6.12(a). Two. (The explanation is up to you.)

Exercise 6.14. Yes. If n is the order of the desired subgroup, try the generator jGj
n
.

Exercise 6.16(b). The coset Hb is the set of destinations of the b-arrows that lead from

the elements of H . There are never two different b-arrows leading into the same node



\master" | 2011/10/18 | 17:10 | page 270 | #284
i

i

i

i

i

i

i

i

270 Appendix

because the actions represented by the generators are reversible (Exercise2.15). There are

never two b-arrows leaving the same node because the actions represented by the arrows

are deterministic (Exercise 2.16). Thus each b-arrow leads to a different node from each

of the elements of H , so there are exactly as many nodes in Hb as in H .

Exercise 6.17(d). Yes, always. For example, h2ni < hni for any n.

Exercise 6.23(a). The diagram for V4 looks like this.

{ }e

V = h,v4 á ñ

á ñh á ñv á ñhv

Exercise 6.26.

(a) Every multiplication table for V4 is organized by an order-2 subgroup, because every

element in V4 has order 2. So whichever one appears next to the identity in the

row/column ordering will generate a subgroup of order 2 in the upper-left corner of

the table.

(b) Your column headings should read as follows.

0 2 4 8 1 3 5 7

Exercise 6.28. The answers to both parts are \yes," but I leave you to find the examples.

Exercise 6.30. Hint: Look at subgroups of the groups S3, A4, and D10.

Chapter 7. Products and quotients

Exercise 7.3(b). False. For instance, the element .3; 0/ is in C4 � C3, but it is not in

C3 � C4, because 3 is not in C3.

Exercise 7.4(c). Hint: Start from Figure 7.6, which shows C3
2 . Your final answer may

require some careful drawing of arrows.

Exercise 7.8.

(c) Hint: Use the information in Section 7.1.4.

(d) Hint: Can you tell whether it is abelian? How can you tell?

Exercise 7.9. Hint: Recall Exercise 6.31.

Exercise 7.14(a). The following diagram is for the rewiring group of C5, with blue arrows

standing for the operation of doubling each red arrow. Another way to say it is that the

action in this rewiring group moves the red arrow that had stood for a to stand for a2.
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Exercise 7.14(d). Interestingly enough, the rewiring group of S3 is isomorphic to S3

itself. It is shown below; green arrows in the rewiring group represent reversing the red

arrows in S3, and orange arrows in the rewiring group represent advancing the blue arrow

in S3 to where the path red-then-blue had been.

e

rr2

f

r2f rf

e

rr2

f

r2f rf

e

rr2

f

r2f rf
e

rr2

f

r2f rf

e

rr2

f

r2f rf
e

rr2

f

r2f rf
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Exercise 7.15.

(a) D4

(d) It is produced from the diagram above, the solution to Exercise 7.14(a).

Exercise 7.16. It is the infinite dihedral group from Figure 3.13.

Exercise 7.18(b).

e

b

á ña

b aá ñ b aá ñ

á ña

V4 organized by
the subgroup =H aá ñ

Left cosets of H
are near each other

Collapse cosets
into single nodes

a

ab

e

b

a

ab

Exercise 7.21. Your answer to Exercise 6.29 part (e) should prove helpful here.

Exercise 7.25(d). Hint: Refer to Exercise 7.23.

Exercise 7.33.

(a) Because D3 is isomorphic to S3, you have already computed its class equation

in Exercise 7.32. The class equation for D1 (isomorphic to C2) is easy to compute, and

then doing one more (D5) should make the pattern clear.

(b) Because D2 is isomorphic to V4, you have already computed the class equations

for the first two odd Dn in Exercise 7.31. Doing one more (D6) should make the pattern

clear.

(d) Hint: See Exercise 7.29.
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Chapter 8. The power of homomorphisms

Exercise 8.4(c). There are four. Here is one way to describe them.

�1.x/ D e �2.x/ D x �3.x/ D 4 � x �4.x/ D 2x mod 4

Exercise 8.6. Yes, all four parts are true, but I leave the explanations to you. Be sure to

base your explanations on Definition 8.1.

Exercise 8.9(c). This is true as long as the group is finite. When the group is infinite,

consider the function in Exercise 8.5.

Exercise 8.11(c). Here is one way to show the infinite quotient using a multiplication

table. The ellipses indicate infinite portions of the table that have been left out of this

finite representation.
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Exercise 8.12(f). Here is an illustration for the extension of part (a) with two new maps

satisfying the requirements.

0

1

2

3

4

5

0

24
1 + á ñ2

0

2 00

q

C1
G
H

C1

1

á ñ2

f

q q¢

H C= 3 H Im GŠ ( ) = 2 <f á ñ Š C2

Exercise 8.13.

(b) Technically, no. We get a group of cosets that is isomorphic to a subgroup of G.
(c) No. For instance,

Q4

h�1i Š V4, and yet there is no embedding from V4 into Q4.

Exercise 8.16. Hint: If H is the commutator subgroup, consider an element in the conju-

gate subgroup gHg�1 , say gaba�1b�1g�1. Multiply this element by a few commutators

to yield an element of H . What can you then conclude?

Exercise 8.17. In each case, the commutator subgroup is highlighted in red; it maps to

feg in the abelianization.
(a)

(b)

Exercise 8.23(a). Hint: Inspect a few elements from C3 �C3 or C5 �C5, using a Cayley

diagram. Infer the answer, then justify it.
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Exercise 8.24. Hint: Does the orbit of .1; 1/ in Cn �Cm pass through the element .0; 1/?

Exercise 8.28. You'll find the answer shown in Exercise 7.7 part (c).

Exercise 8.29.

(b) Dn Š Zn Ì� C2 for a certain � . (What is �?)

(d) We have seen such groups before in Exercise 7.7(c). There is another in Exercise

8.30.

Exercise 8.32.

(b) Here are two rows from the table so that you can check some of your work.

r

f rf rfr f2

r2r2r2r2

r f2f

rr

f

(c) All of an element's conjugates are in a row, so the row lists all the elements in a

conjugacy class (sometimes more than once). Therefore the rows show all the conjugacy

classes of the group.

(d) A column shows all the conjugates by the specific element at the head of the

column. It therefore shows the whole inner automorphism created by that element. For

instance, reading down the column that is headed by r will tell you where the inner

automorphism �.x/ D rxr�1 maps e, then r , then r2, and so on. This makes answering

part (e) easy.

Exercise 8.35. Hint: Use the direct product process for multiplication tables in Definition

7.3 as a starting point. Then come up with a notion of rewiring for multiplication tables.

Exercise 8.38 (b) and (c). Hint: Divide C8 by C2.

Exercise 8.42.

The formula for multiplication of two-by-two matrices will help with parts (a) and

(b); it is given here.

"

a1 b1

c1 d1

#

�
"

a2 b2

c2 d2

#

D
"

a1a2 C b1c2 a1b2 C b1d2

c1a2 C d1c2 c1b2 C d1d2

#

Exercise 8.43(a). Hint: Show that it is an embedding by showing that the only element

to which � maps .e; e/ is e.

Exercise 8.44.

(a) By Theorem 8.8, any abelian group of order 4 must be a direct product of cyclic

groups whose orders multiply to 4. The only possibilities of whole numbers multiplying

to 4 are 1 � 4 and 2 � 2. The first corresponds to C1 � C4, or just C4, and the second

corresponds to C2 � C2, which is isomorphic to V4. Thus all abelian groups of order 4

are isomorphic either to C4 or V4, and no other.

(b) The final answer for this part is given here, but justifying it is up to you. There

are three groups to which any abelian group of order 8 must be isomorphic, C2 �C2 �C2,

C2 � C4, and C8.
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(d) By Theorem 8.8, any abelian group of order 30 must be a direct product of cyclic

groups whose orders multiply to 30. The possibilities are therefore C1 � C30, C2 � C15,

C3 � C10, C5 � C6, and C2 � C3 � C5. The first of these (C1 � C30) is obviously just

C30. But the rest are as well, based on Theorem 8.7. Thus every abelian group of order

30 is isomorphic to just one, C30.

Exercise 8.45(c). Hint: Rewrite the equation as follows.

gapk D gbmg

.gpk

/a D .gm/bg

g D .gm/�b.gpk

/a

What order does the element gm have? What order does gpk

have?

(d) Hint: Apply Exercise 8.43.

Exercise 8.46(a). Hint: The following figure illustrates the homomorphism � together

with its associated quotient map and isomorphism (as in Figure 8.13).

G
H

G G

q G: ! i : ! Im( )f

f : G G!

f( ) =g g
p

e = i H( )

H

ap= i aH( )

aH

bp= i bH( )

bH

cp= i cH( )

cH

d p= i dH( )

dH

e

Im( ) =f Im i( )
G
H

G
H

If we organize the right copy of G by Im.�/ and emphasize the fact that Im.�/ is a cycle,
it also allows us to emphasize the fact that G

H
is a cycle, as shown in the figure below.

Consider the element a, which in the following figure satisfies the equation haH i D G
H
.

Try to show that hai D G. (Is H a subgroup of hai?)
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G
H

G

Im( )fH

e

aH

ap

bH

bp

cH

cp

dH

dpi

g1Im( )f

g2Im( )fg3Im( )f

g4Im( )f

(c) Just one. You provide the reason.

(d) The chain is illustrated as follows. It ends in a cycle, because �nC1 would send

all elements to the identity.

G
f1

Im( )f1

=
G

Ker( )f1

< G

=

< Im( )f1

Cp

f2 f3 fn

Im( )f2

Im( )f1

Ker( )f1

…

Exercise 8.47(b). Hint: Recall Exercise 6.8.

(c) Their only common element is the identity. Prove this by considering what any

other element of K being in C would imply.

(e) Hint: Apply Exercise 8.37 part (a).

(g) If a copy of C always remains, then the quotients must be eliminating the other

parts of the group. Continuing the process will therefore eventually lead to a Gn that is

just a copy of C , as shown in the following illustration.

C C1 =

q1 q2 q3 qn

C C2 = C C3 =

G G1 =
G2 =

G1

K1
G3 =

G2

K2

G1/K1

K2
=

G C Cn n= =

…

A specific example may be more helpful. In the following example, p D 2, so the abelian

group is a product of cyclic groups whose orders are all powers of 2. Notice that not

every quotient undoes a direct product (e.g., q2).
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q1 q2 q3

C C C4 8 2´ ´ C C4 8´ C C2 8´ C8

(h) The following illustration shows the quotient operation, assuming GiC1 is isomor-

phic to the direct product CiC1 �HiC1 for some subgroup HiC1 < GiC1 that we have

not yet determined. The quotient map qi as stated in the problem divides by Ki , so each

coset of Ki in the left diagram maps to one element in the right diagram.

e
Ki

Hi

cKi

cHi

c H2
i

c
cKi

c2

c K2
i

qi

G C HŠ ´ ii i G C HŠ ´ i +1i i+1 +1

Ki

c K2 i ( )c K2 i Hi + 1

( )cKi Hi + 1

Hi

Ki
Hi + 1 =

Consider the subgroup Hi < Gi , which maps to the subgroup HiC1 < GiC1. Use the

above illustration to explain why Gi D CiHi , and Ci and Hi overlap only at the identity

element. Then apply Exercise 8.43.

Exercise 8.49. Each subscript is a power of a prime.

Exercise 8.50. Hint: Assume for simplicity's sake that the generators are ordered so that

g1; : : : ; gk are of finite order and gkC1; : : : ; gn are of infinite order.

Chapter 9. Sylow Theory

Exercise 9.3(b). This is the question that Theorem 9.4 answers.

Exercise 9.12. Such a counterexample was given in the text, in Section 6.5.
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Exercise 9.15(a). Hint: Let n D jgj. If n is larger than 1 and smaller than p, then it is
not a factor of p. Dividing p by n gives some remainder r < n, so that p D mn C r .

What is gmnCr ?

Exercise 9.16(a). Hint: Consider the case when p D 5. If a � b � c � d � .abcd/�1 D e is

an equation whose left side is in S , then what does the permutation �.1/ do to it? What

does this say about any �.n/?

Exercise 9.17(a). Hint: Argue as in Theorem 7.7 and Observation 8.3, showing the closure

is the original set.

Exercise 9.21. Hint: Apply the Fundamental Theorem of Abelian Groups.

Exercise 9.22(c). Hint: You cannot prove that the Sylow 3-subgroup must be normal,

because in A4 it is not. You cannot prove that the Sylow 2-subgroup must be normal,

because in the group C4 Ì� C3 of Exercise 8.30, it is not. But you can prove that either

one or the other will be normal in any group of order 12.

Exercise 9.23.

(a) They are the four subgroups generated by the following four cyclic permutations.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

(b) There are ten. Did you find them all?

Exercise 9.27. There are two, the abelian group C21 (which is isomorphic to C3 � C7)

and the non-abelian semidirect product group C3 Ì� C7 based on the homomorphism

� W C3 ! Aut.C7/ by

�.n/ D the automorphism that maps a to a.2n/.

A Cayley diagram for this non-abelian group is shown here.

e

b
a

ab

a b6 2

a b6

a6

b2

ab2

a b5 2 a b2 2

a b4 2 a b3 2

a3

a2

a4

a 5
a b5 a b2

a b3a b4
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Exercise 9.28. As part of analyzing whether your work is correct, compare your results

with the following correct list.

Abelian groups: C12 and C2 � C6

Non-abelian groups: D6, A4, and the C4 Ì� C3 from Exercise 8.30

Chapter 10. Galois Theory

Exercise 10.3.

(g) False, because complex conjugation might be equal to the identity, if all the

polynomial's roots are real numbers.

(i) True, a polynomial that doesn't fit the theorem's requirements may still be irre-

ducible.

(j) True. All factorable quintic polynomials are solvable because the existing methods

for polynomials of degrees 1 through 4 can be applied to the factors. For example, because

the quintic equation

3x5 C 6x4 C 13x3 C 21x2 C 28x C 14 D 0;

factors into

.x2 C 2x C 2/.3x3 C 7x C 7/ D 0;

it can be solved. One of the factors must equal zero, so we have two simpler equations.

x2 C 2x C 2 D 0 3x3 C 7x C 7 D 0

For the first, the quadratic formula gives �1˙ i . For the second, the cubic formula gives

solutions whose exact representations are a bit lengthy, but which are approximately equal

to 0:394˙ 1:67i and �0:789.
Exercise 10.5. Hint: The left side simplifies like this:

.a C bi/.c C di/ D .a�bi/.c�di/ D ac�bci�adiCbdi2 D .ac�bd/�.bcCad/i

(Recall that i 2 D �1.) Show that the right side simplifies to the same expression.

Exercise 10.6.

(a)

(b)
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(e) What pattern do you find in parts (a) and (c)?

(g) No, one uneven division cannot conclude irreducibility. Dividing by a different

polynomial may come out evenly.

Exercise 10.8.

(b) Hint: Use the fact that i 2 D �1 to eliminate i2 from the product.
(c) Hint: Multiply 1

aCbi
by a�bi

a�bi
and simplify.

Exercise 10.9.

(a) .a C b
p
2/C .c C d

p
2/ D a C b

p
2C c C d

p
2 D .a C c/C .b C d/

p
2

(d) Hint: Proceed as in Exercise 10.8 part (c).

(e)

.aC b
p
2/2 D 3

a2 C 2ab
p
2C 2b2 D 3

2ab
p
2 D 0

a D 0 or b D 0

The first of these options leads to 2b2 D 3, or b D
p

6
2
, which is not an option because

b 2 Q and
p
6 … Q. The second of these options leads to a2 D 3, which gives a Dp

3 … Q, and yet of course a 2 Q. Thus neither can happen.

Exercise 10.11(c). Computing an element's multiplicative inverse is messy, but doable.

1

aC b
p
2C c

p
3C d

p
6

D 1

.a C b
p
2/C .c C d

p
2/

p
3

� .a C b
p
2/ � .c C d

p
2/

p
3

.a C b
p
2/ � .c C d

p
2/

p
3

D .aC b
p
2/ � .c C d

p
2/

p
3

.a C b
p
2/2 � .c C d

p
2/2.

p
3/2

D .a C b
p
2/ � .c C d

p
2/

p
3

a2 C 2ab
p
2C 2b2 � 3c2 � 6cd

p
2 � 6d 2

D aC b
p
2

same denominator
� c C d

p
2

same denominator

p
3

The two fractions are members of Q.
p
2/ and so by Exercise 10.9 they simplify to some

w C x
p
2 and y C z

p
2, making this last expression of the appropriate form,

w C x
p
2 � y

p
3 � z

p
6:

Exercise 10.12. If r is a root of a degree-m polynomial from Q, write

amr
m C am�1r

m�1 C � � � C a0 D 0:

amr
m D �am�1r

m�1 � am�2r
m�2 � � � � � a0

rm D �am�1

am

rm�1 � am�2

am

rm�2 � � � � � a0

am

Thus all powers rm or above can be reduced, so only powers less than m are needed.
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Exercise 10.17.

(c) c.˛/n D c.˛/c.˛/ � � � c.˛/
„ ƒ‚ …

n times

D c.˛ C ˛ C � � � C ˛
„ ƒ‚ …

n times

/ D c.n˛/

(f) The group of roots is isomorphic to C6, which is generated by the elements 1 and

5. The group of roots itself is generated by either c.�
3
/ or c.5�

3
/.

Exercise 10.20. It requires starting with
p
3i , which is not a root of x3 � 2. Also, I was

not focused on solvability at that time; it was clear that Q.r1; r2; r3/ is an extension by

radicals because I wrote r1, r2, and r3 using radicals.

Exercise 10.21. Hint: Show that � fixes 0 and 1, then proceed to all of Q from there.

Exercise 10.22(b). If r is the given root, r D 5
p

1C
p
2, then use algebra to eliminate

the radical signs.

r5 D 1C
p
2

r5 � 1 D
p
2

.r5 � 1/2 D 2

r10 � 2r5 C 1 D 2

r10 � 2r5 � 1 D 0

So the polynomial is x10 � 2x5 � 1.

Exercise 10.24(a). One of the roots is �1
3
; the other two are not. Write x D �1

3
.

Exercise 10.25. Hint: Factor x � 3
p
2 out of x3 � 2. Recall that you are permitted to use

any coefficient in Q.r1/.

Exercise 10.27. The derivative is 5x4 C 40x3.

5x4 C 40x3 D 0

5x3.x C 8/ D 0

x D 0 or x D �8
Thus the polynomial has only two places where it changes direction (from uphill to

downhill or vice versa). Thus there are at most three places it might cross the x axis, since

between any two such crossings it must change direction. We can tell that the polynomial

does indeed cross the x axis exactly three times by plugging into the polynomial four

values, 0, �8, a large number (say 100), and a small number (say �100). The results are
in the following table.

x polynomial

�100 < �9 billion

�8 8190

0 �2

100 > 10 billion
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Thus the function goes from negative to positive, back to negative, and then positive one

final time, for a total of three crossings of the x axis, and thus three real roots.

Exercise 10.28.

(a) See Exercise 10.17.

(c) I describe the general technique and one possible answer; you must find your

own polynomial. Let the derivative of the polynomial we seek have four different roots

a; b; c; d , so there may be five crossings of the x axis. That derivative is then .x�a/.x�
b/.x � c/.x � d/.
Multiply out the derivative and integrate to get the original polynomial (introducing

a new constant e). Multiply by a common denominator to have only integer coefficients.

Find values of a; b; c; d; e that satisfy the Eisenstein criterion. (You have a lot of freedom,

so guess-and-check is a somewhat effective method.)

Now we have to verify that the peaks and valleys of your polynomial are on opposite

sides of the x axis. So plug a; b; c; d into your polynomial and see what y values they

yield. Modify e to ensure they straddle the x axis, while preserving the Eisenstein criterion.

When following this procedure, I obtained the polynomial

6x5 � 15x4 � 10x3 C 30x2 � 1;

but yours may be different.

(d) Your answer to part (b) is, for the reasons in Section 10.7.
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Index of Symbols Used

In most cases, refer to the Index for more information on a symbol.

Groups

Cn cyclic group Q4 quaternion group

Dn dihedral group Un U -groups, from page 188

Vn Klein 4-group Zn alternate notation for Cn

Sn symmetric group (see page 65)

An alternating group G4;4 see page 151

Number Systems

N natural numbers Q rational numbers

Z integers Q� non-zero rational numbers

R real numbers QC positive rational numbers

C complex numbers

Functions

Perm permutation group NG.H/ normalizer of H in G

Ker kernel of a homomorphism sin, cos trigonometric functions

Im image of a homomorphism � W G ! H � is a homomorphism

Aut automorphism group from G to H

Orb orbit of an element �.x/ D y defining a homomorphism

Stab stabilizer of an element �; �; �;  various homomorphisms

287
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288 Index of Symbols Used

Molecules

B.OH/3 Boric acid SF5Cl sulfur chloride pentafluoride

C2H4 ethylene Fe.C5H5/2 eclipsed ferrocene

C6H6 benzene

Other symbols

C addition, sometimes mod n 2 element of a set

� subtraction f g set brackets

� multiplication, general group e group identity

operator (see page 48) h i generator notation

� example operator (see page 48) j j group/element order

� direct product aH , Ha left and right cosets

Gn repeated direct product HK multiplying subgroups,

.a; b/ element in a product group, from page 189

point in complex plane 7! notation for defining

Ì semidirect product functions/homomorphisms

� division Š isomorphic to

G
H

group quotient �n congruent mod n

< less than, subgroup i imaginary number
p

�1
C normal subgroup a C bi complex number

p
n
p

square root, nth root Nc complex conjugate of c

Š factorial Q. / field extension of Q
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Abel, Neils, 36, 69, 221, 223, 225, 227, 247,

251

abelian, 59, 68{71, 88{90, 92, 94, 114, 122,

148, 152, 175{177, 188{193, 211{213,

219, 220, 222, 245, 249, 275, 277

quotient, 245, 249

abelianization, 183, 274

action

diagrams, 196{197, 200, 202, 218

of a group on a set, see group actions
algebra, 41, 44{45, 48, 50, 59{62, 69, 94, 97{

98, 102, 120, 126{129, 205, 220, 221,

223{225, 230, 231, 253

algebraic numbers, 227, 252, 258

algebraically closed field, 228

alternating group An, 22, 47, introduced on 80,

88, 90

ambiguous, see Cayley diagram, ambiguous ar-
rows

applications of group theory, 25{40, 81, 194,

221{260

arrows, see Cayley diagram arrows
art

group theory in, 31

on bedroom walls, 7

associativity, 49{52, 55, 56, 266

automorphism

field, 236{241, 244, 250, 256, 257

group Aut , footnote on 98, 178, 180, 181,

185

inner, 186, 213, 214, 275

axioms, 6

axis, 32

x, 282, 283

in a multiplication table, 48

in the complex plane, 228, 229, 234, 237

of rotation, 14, 247, 248, 263

benzene C6H6, 38

Big Book, The, 11{13

big question of Galois Theory, 221, 225, 227,

228

bilateral symmetry, see symmetry, bilateral
body-centered cubic, 30

Boric acid B.OH/3, 28, 64, 74

calculator, see Cayley diagram as a calculator
canceling, 61, 142, 205

carbon, 38, 251

Cardano, Girolamo, 224

Cauchy's Theorem, 199{206, 208{211, 216, 220,

249

Cayley diagram, introduced on 18

ambiguous arrows, 137{138, 142, 166

arrows, introduced on 19{20

as a calculator, 44{46

connected, 34, 57, 172, 266

infinite, see infinite Cayley diagram
layout, 94, 101, 106, 113, 125, 132{135,

138, 149, 163, 171, 175

parallel arrows, 95, 175

Cayley's Theorem, 83{86, 95{96

Cayley, Arthur, 18

cell, see multiplication table cells
chain

of field extensions, 245

of normal subgroups, 245, 249

class equation, 146, 153, 154, 205, 247{248

classifying groups, 220

abelian, 275

289
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290 Index

order 6, 203{205

order 8, 211{213

order 15, 216{217

clock, 65, 169

arithmetic, see modular arithmetic
clockwise, 4, 12, 13, 23, 28, 37, 50, 64, 65, 74,

75, 95, 129, 141, 144{146, 153, 247,

248, 262, 263

closure, 56, 255, 279

codes, see error-correcting codes
codomain, see function, codomain of a
coefficient, 224, 228, 231, 232, 238, see integer

coefficients

coins, 7, 261

collapsing cosets, see group quotient and quo-
tient maps

color spectrum, 66

column, see multiplication table rows and
columns

common multiples, 173, 175

commutative, 52, 59, 69{71, 120, 128,

see abelian
commutator, 183, 274

compass, see ruler and compass
complex

conjugate Nc, see conjugacy, complex
numbers C, 163, 188, 241, 223, 226{231,

250, 254

Complex Conjugate Root Theorem, 229, 236,

250, 253

component of a pair, 120, 123, 127

configurations

of light switches, 19, 20

of Rubik's Cube, 4, 5, 11{12

of the rectangle puzzle, 15{19, 42, 195{197

of the triangle, 75

starting, 14, 19, 42{44, 75

congruence �n, see mod and modular arith-
metic

conjugacy

classes, 145{147, 152{155, 247{249

complex, 229{231, 235{237, 250, 252, 280

operation, 142{147, 152{155, 186, 197, foot-

note on 197, 198, 208, 210, 213{217

conjugation table, 186, 275

connected, see Cayley diagram, connected
connecting corresponding nodes, see technique

for constructing (semi)direct products

using Cayley diagrams

constant term, 233

constructing products, see technique for con-
structing

contra dance, see dancing

converse, see Lagrange's Theorem
copies of a subgroup, see coset
coset, introduced on 102

left, introduced on 103

representative, 103, 140

right, introduced on 103

cosine function, see trigonometry
counterclockwise, see clockwise
crystals, 29{31, 34

cube, 30, 80, 82, 153, see Rubik's Cube
doubling a, 228

root 3
p
, 225, 226, 232

cubic

formula, 224, 226

polynomial, 224

cycle graph, 68, 71, 77{78, 88{92, 114, 154,

162, 184, 274

cyclic group Cn, 22, 29, 47, introduced on 64

dancing, 34{35, 40, 195, 265

decimals, 226

degree

multiplying, 238

of a field extension, see field, degree of an
extension

of a polynomial, see polynomial degree
denominator, 253, 281, 283

derivative, 259, 282, 283

deterministic, 5, 6, 15, 24, 270

diagonal, 30, 66, 67, 70, 71, 93, 130

dihedral group Dn, 24, 55, 74{78, 90{94, 154,

183

dimension of an abelian group, 175, 176

direct product, see product, direct
disguise a (sub)group, 101, 134, 172, 175, 184

divides (evenly into), introduced on 107, 110,

173, 190, 200, 203, 204, 206, 208, 209,

211, 213, 215, 216, 219, 249

dodecahedron, 81{83, 247

domain, see function, domain of a
doubling a cube, see cube, doubling a

eclipsed ferrocene Fe.C5H5/2, 38

Eisenstein Criterion, 233, 249, 252, 283

element (of a set or group) 2, introduced on 48
embeddings, introduced on 163, 157{167, 180{

182, 185, 196, 235, 245, 257, 269, 274,

275

equations

class, see class equation
of arithmetic, 223{227, 252{253, see poly-

nomial equations
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solving, see equations of arithmetic and group,
solving equations in

equivalence relation, 154

error-correcting codes, 37

ethylene C2H4, 38

Euler number, 50

existence of subgroups, see First Sylow Theo-
rem

expanding number systems, 222, 232

explore (when mapmaking), 15{17, 19, 26, 102,

263

extensions, see field extensions

factorable, 252, 280, see irreducible
factorial Š, 80

factors

in a product group, 120, 121, 123, 127{128,

148, 149, 189

in a quotient group, 132, 134, 150

independence, 123{125

of a polynomial, 232, 280

families of groups, 63, see cyclic, abelian, di-
hedral, symmetric, alternating, and U -

groups

field, 221{223, 226{228, 234, 235, 238, 242,

251, 254, 255

degree of an extension, 234, 238{239, 242{

243, 249

extension, 228, 233{234, 236, 238{239, 242{

245, 249, 256, 257, see expanding num-
ber systems

finite, 223, 259

fixed, 236, 237, 239, 240, 244, 256, 257,

282

intermediate, 239, 242

operations, 233, 236

successive extensions, 238

fifth root 5
p
, 227

figures, see dancing
finite

decimal expansion, 226

field, see field, finite
group, see group, finite

First Sylow Theorem, introduced on 208

fixed field, see field, fixed
flip

180-degree in space, 146, 248

and non-flip, 76

horizontal/vertical, 14{20, 23, 28, 29, 32, 41,

42, 65, 74{75, 195, 196, 229, 237, 243,

244

folding

a multiplication table, see multiplication ta-
ble, folding

a tetrahedron, 91

fourth root 4
p
, 225, 226, 232

frieze pattern, 31{34, 39{40, 263, 268

Fuller, Richard Buckminster, 251

function, 158{159, 161, 163, 169, 171, 177,

180, 187, 195, 256

codomain of a, 159{167, 178, 180{182

domain of a, 159{167, 180{182

image Im, 159, 163{165, 167, 178, 183
image Im, 195, 196, 235

that is not a homomorphism, 161

Fundamental Homomorphism Theorem, 167

Fundamental Theorem of Abelian Groups, 70,

175, 177, 189, 193, 279

Galois groups, 233{245, 249{250, 252, 255{

258

Galois, �Evariste, 36, 217, 221, 223, 225, 227,

234, 243, 247, 251

generators, see group generators and homomor-
phism, generating

geodesic domes, 251

geometry, 228

glide reflection, 32, 37

graph, footnote on 98, 228, 230, 234, 241, 250

Greeks, 228

grid (abelian Cayley diagrams), 118, 121, 124,

175

group

actions, 194{197, 200, 202, 206{208, 215,

216, 218{219, 231, 235{237, 241, 243

classification, see classifying groups
crystallographic, see crystals
families, see families of groups
finite, 22, 47, 94, 107, 175, 188, 189, 252,

261

frieze, see frieze pattern
generators, 6{8, 15, 19, 21, 23{24, 34, 40{

41, 59{60, 89, 90, 92, 93, 100{102,

111, 141{142, 153, 174{178, 188, 196,

222, 263

infinite, see infinite groups
of even order, 252

of roots, 256{257, 282

order, 64, 80, 88{90, 94, 107{108, 110, 114{

115, 140, 146, 148, 175, 189{194, 198{

213, 215{220, see classifying groups
p-group, see p-group
presentations, 92

quotient, 77, 117, 132{139, 150{152, 171,

172, 183, 187, 209, 245, 273, 277
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292 Index

simple, 219

solvable, 245{247, 249{250, 257, 259

solving equations in, 60{61

structure, 19{20, 35, 80, 84, 90, 99, 117,

120, 125, 129, 131{135, 150, 157{160,

163{166, 168, 175, 177, 194, 203, 214,

251

wallpaper, see wallpaper groups
Group Explorer, ix, 21, 24, 38, 46, 55, 58, 59,

90, 94, 95, 101, 154, 217

Hasse diagram, 112{113, 226, 228, 234, 242{

247, 257, 270

path through a, 245{247

hidden subgroups, see subgroups, hidden
highlighting a subgroup, see subgroup high-

lighting

homomorphism, introduced on 159

generating, 160{161, 181

image Im, see function, image of a
interpretation, 195, 199, 202, 206, 218, 219

kernel Ker, 166{169, 181{183
kernel Ker , 219

sequence of, 168, 169, 171, 182, 190, 191,

245, 247, 276, 277

icosahedron, 81{83, 247{248

identity element e, introduced on 50, 51, 63,

68, 78, 85, 86, 89, 94, 95, 98, 100, 102,

110, 128, 146, 151, 166{167, 175, 180,

181, 189, 196, 200, 222, 249

image Im, see function, image
independent factors, see factors, independence
index, see subgroup index
infinite

Cayley diagram, 23, 32, 33, 149

groups, 8, 23, 31, 33, 34, 92, 170, 192

multiplication tables, 54, 273

symmetrical objects, 31, 32

inflating

cells, see technique for constructing direct
products using multiplication tables

nodes, see technique for constructing direct
products using Cayley diagrams

integer coefficients, 226, 232, 233, 253, 283

integers Z, 62, 65, 78, 170, 171, 172, 222

interpretation homomorphism, see homomorph-
ism, interpretation

intersect, see informal word \overlap"
inverse

elements, 50{51, 55{56, 60{61, 63, 80, 94,

141, 143, 201, 222, 254, 255, 267, 281

multiplicative, 222, 254, 255

irrational, see rational
irreducible polynomial, see polynomial, irreduc-

ible

isomorphic Š, footnote on 33, 35, 84, 85, 90,
120, 133, 134, 135, 148, 157, intro-

duced on 163, 167{168, 171, 174, 175,

187, 188, 196, 204, 213, 217, 238, 271,

274, 275

kernel Ker , see homomorphism kernel
Klein 4-group V4, 20, 21, 43, 263

Klein, Felix Christian, 20

knit product, see product, knit

Lagrange's Theorem, 105{110, 114, 146, 194,

199, 205, 218, 219, 278

counterexample to converse, 108, 218, 278

Lagrange, Joseph Louis, 107

layout, see Cayley diagram layout and multipli-
cation table layout

least common multiple, see common multiples
left cosets, see cosets
left multiplication, see multiplication
linear polynomial, 224

manipulations of an object, see technique for
measuring symmetry

map, see function
roadside, 123

through the wilderness, 11{12

matrix, 188, 275

mirror symmetry, see symmetry, mirror
mod, 101, 188, 200, 206, 208, 210, 215{217,

254, 260, 273

modular arithmetic, 65{66, 169{171, 184

molecules, 27{31, 38{39, 64, 74, 251, 263

moves (in a game), 4{6, 11{19, 23, 24, 28, 31{

32, 91, 261, 262

multiples, see common multiples
multiplication

of variables, 44

on the left, 104, 206, 207, 215, 219

on the right, 84, 103, 104, 142, 143, 266

multiplication table, introduced on 45

cells, 46, 66, 70, 76, 84{86, 105, 126

folding, 71

infinite, see infinite multiplication table
layout, 76, 101, 113, 151

rows and columns, 45{46, 55, 57, 66, 70,

84, 85, 105, 113, 126, 127, 266, 270

music, 34, 37

n-gon, regular, 24, 55, 74, 92, 268
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natural numbers N , 221{223

navigating a Cayley diagram, 98, 123{125

no action, 23, 42, 44, 46, 50, 81, 196, 261

node, introduced on 20

non-commutative, see commutative
non-embedding, see embedding and quotient

map

non-normal extension, see normal extension
non-proper subgroup, see proper subgroup
non-real roots, see roots, real
non-repeating decimals, 226

non-stable element, see stable element
non-trivial subgroup, see trivial subgroup
normal

extension, 242, 249, 258

subgroup, see subgroup, normal
normalizer NG.H/, 139{142, 152, 206{210,

216

nth power homomorphism, 182

number of subgroups, see Third Sylow Theo-
rem

number theory, 37, 173

numbering an object's parts, see technique for
measuring symmetry

Observations, 4, 5, 102, 103, 164{166

octahedron, 82, 93

one-dimensional abelian group, see dimension
of an abelian group

operation

binary, introduced on 48, 48{51, 55{57, 62,

126, 163, 169

comparing, 227

of arithmetic (the field Q), 221{225, 234,

236, 252

product, see product
quotient, see group quotient

orbit

in a group action Orb, 197{200, 206, 216{
218

of a group element, 66{68, 71, 74, 77, 89,

94, 100, 110, 158, 160, 173{175, 184,

204, 213, 275

Orbit-Stabilizer Theorem, 198{200, 218, 278

order

of a (sub)group, see group order
of actions, 8, 59, 69

of an element, 94, 110, 115, 152, 154, 173,

175, 219, see group order
organization, see Cayley diagram layout and

multiplication table layout

orientation, 15, 91, 145

overlap, 105, 106, 154, 184, 189, 278

p-group, 205{209, 213, 219

P�olya's technique, 36

page (in The Big Book), 12{13

paradigm (for approaching group theory), 1, 52,

97, 99, 126

parentheses, 49{50, 121, 223

particles, 36

partition, 105{107, 114, 145, 154, 165, 197,

200, 247{248

path

in a Cayley diagram, 18, 43, 57, 67, 98, 103,

104, 123, 141, 142, 158, 160, 165, 205,

212

through a Hasse diagram, seeHasse diagram,
path through a

pentagon, regular, 24, 55, 74, 263

pentaradial symmetry, see symmetry, pentara-
dial

permutation, 78{86, 90, 93, 95{96, 110, 130,

153, 202, 219, 236{238, 247, 249{250,

268, 279

group Perm, 194{197, 206, 231, 235
perpendicular

arrows, see arrows, parallel
in a direct product, 120, 121

physics, 36, 223

pinwheel, 64, 74, 91

plane

complex, 228{229, 234{236, 256

points in the, 120

Platonic solids, 63, 80{82

point in the plane, see plane, point in the
polygon

regular, 24, 74, 78, 80, 81

truncated, 268

polynomial, 36, 223{225

degree, 224{225, 232{234, 252, 255, 259,

280, 281, see field, degree of an exten-
sion

division, 232, 253{254, 280{281

equations, 224{227, 252

general form, 224

irreducible, 231{234, 239, 241, 242, 254,

258{259

quintic, 225, 247{250, 252

roots, 224, 228{231, 235{238, 243

solvable (by radicals), 225, 245, 247{250,

252

unsolvable, see polynomial, solvable
predefined list of actions, 4, 6, 15, 24, 79

prime

factorization, 185, 189



\master" | 2011/10/18 | 17:10 | page 294 | #308
i

i

i

i

i

i

i

i

294 Index

number, 92, 110, 149, 188, 190, 191, 203,

220, 233, see relatively prime numbers
order of a (sub)group, 199{200, 202, 204,

205, 210, 211, 219

powers of a, 189{191, 206, 208, 213, 215,

219, 278

product

direct �, 22, 47, introduced on 117{128,
128{135, 147{149, 171{175, 189, 191,

275, 277

knit, 128

semidirect Ì, 77, 128{132, 135, 136, 137

149{150, 177{180, 185{187, 279

propeller, 29, 64, 65, 74, 91

proper subgroup, see subgroup, proper

quadratic

formula, 226, 231

polynomial, 224

quartic

formula, 226

polynomial, 225

quasihedral group, 22, 47

quaternion group Q4, 53, 54, 60

question marks, 194, 203, 216

quintic polynomial, see polynomial, quintic
quotient, see group quotient
maps, 163{169, 181{182, 185, 191, 209, 276,

278

radicals
p
, 225{227, 232{234, 238, 243{245,

250, 282

rational numbers Q, 62, 112, 152, 187, 223,

225{228, 232{245, 252, 255{258, 281{

282

real

numbers R, 223, 225, 226, 227

roots, see roots, real
rearranging, 7, 26, 35, 36, 78{79, 130, 135,

177, 194, 195, 235, 236

rectangle puzzle, 14{21, 23, 26, 27, 41{43, 195{

197, 262

reflexive relation, 154

regular, see n-gon, pentagon, polygon, and reg-
ularity

regularity (of Cayley diagrams), 97{99, 102,

103, 108, 137, 139, 197, 205, 212, 213

relation, 154

relationship among subgroups, see Second Sy-
low Theorem

relatively prime numbers, 171{175, 184{185,

188, 190

remainder, 107, 170{171, 254

renaming isomorphism, 168, 169, 172, 204

repeating decimals, 226

representative, see coset representative
revealing subgroups, see subgroups, revealing
reversible, 4, 6, 15, 24, 50, 79, 261, 262, 270

rewiring, 129{132, 135, 137, 149{150, 177{

179, 185{186, 271{272, 275

right cosets, see cosets
right multiplication, see multiplication
rings in a dihedral group, 67, 75{76, 95, 102,

178

roadside map, see map, roadside
roots

of a polynomial, see polynomial roots
real, 250, 259, 283

rotation, 74, see clockwise and turn
90-degree, 6, 153

120-degree, 91, 144, 146

180-degree, 6, 91, 146, 153

360-degree, 25

axis, see axis of rotation
rotational symmetry, 64, 65, 74, 91

row, see multiplication table rows and columns
Rubik's Cube, 3{6, 11{15, 50

solving, 3, 4, 11{13

Rubik, Ern�o, 3, 4

ruler and compass, 228

rules

breaking, 8

of a group, 6

Second Sylow Theorem, introduced on 213

semidirect product, see product, semidirect
sequence (of actions), 5, 6, 15, 24, 44{45, 49{

50, 144, 161, 261, 263

set, introduced on 48

sextic polynomial, 252

short exact sequence, 182

simplifying, 44{45, 49, 223, 224, 230, 234, 252

sine function, see trigonometry
solvable

by radicals, see polynomial, solvable
group, see group, solvable
polynomial, see polynomial, solvable

solving equations, see equations of arithmetic
and group, solving equations in

spectrum, see color spectrum
spin, 64, 74, 263

square

dance, see dancing
puzzle, 23, 24, 55

root
p
, 225, 226, 232, 234, 236

shape, 74, 78, 96, 262



\master" | 2011/10/18 | 17:10 | page 295 | #309
i

i

i

i

i

i

i

i

Index 295

squaring

a circle, 228

an element, 80, 81, 113, 248, 268, 269

stabilizer Stab, 217
stabilizer Stab, see stable element
stable element, 197{200, 202, 206{208, 215{

216, 218, 219

stars

sea, 25

shape, 268

starting configuration or node, see configura-
tions, starting

structure, see group structure
subgroup <, 97, introduced on 99

for many terms related to subgroups, see group
conjugate, see conjugacy operation
hidden, 100

highlighting, 73, 100, 103, 157, 158

index, introduced on 107, 109, 110, 112, 114,

152, 199, 206, 208, 210, 215

normalC, 105, 111, introduced on 121, 137{

139, 142{144, 146{147, 149, 151{152,

166, 168, 170, 181{183, 187, 215, 216,

217, 219, 245{249, 251, 279, see nor-
malizer

p-subgroup, see p-group
proper, 100, 101, 108, 114

revealing, 100{101, see Cayley diagram lay-
out and multiplication table layout

trivial, 100, 112, 146, 167, 235

subtraction, example of non-associativity, 50

sulfur chloride pentafluoride SF5Cl, 38

Sylow

p-subgroup, 213{217, 219{279

Theorems, 108, introduced on 208{216

symmetric

group, 22, 47, introduced on 78{79, 88, 90,

96

relation, 154

symmetry, 4{7, 25{34, 37{40, 64{65, 74, 81{

82, 91{92, 98{99, 195{196, 229{231,

235{244, 247, 263{264, 268

bilateral, 25, 74, 91

mirror, 25, 229, 235, 243{244

pentaradial, 25

technique

for constructing direct products using Cayley

diagrams, 118

for constructing direct products using multi-

plication tables, 126

for constructing semidirect products using

Cayley diagrams, 179

for constructing semidirect products using

multiplication tables, 187

for measuring symmetry, 26{34, 37{40, 81,

91, 195{196

P�olya's, see P�olya's technique
term (in a polynomial), 224, 231, 233, 234, 238,

242, 255, 257

tetrahedron, 81{82, 91{92, 144{145, 155

Third Sylow Theorem, introduced on 215

three-dimensional abelian group, see dimension
of an abelian group

topology, 37

transcendental numbers, see algebraic numbers
transitive relation, 154

triangle puzzle, 24, 55, 74{76

trigonometry, 256

trisecting an angle, 228

trivial subgroup, see subgroup, trivial
truncated, see cube, dodecahedron, icosahedron,

n-gon, polygon, tetrahedron

turn (quarter, half, etc.), 23, 28, 247, 248, 262,

263

two-dimensional abelian group, see dimension
of an abelian group

U -groups Un, 188

unambiguous arrows, see arrows, ambiguous
uniform symmetry, see regularity
unit circle, 256

unknown, see variable
unsolvable

by radicals, see polynomial, solvable
group, see group, solvable
polynomial, see polynomial, solvable

variable, 223

(in)dependent, 158

vertex, 91, 144{146, 247{248

viewpoint

diheral example, 75

for approaching group theory, see paradigm

wallpaper groups, 34

wilderness, 11{12

x-axis, see axis in the complex plane and axis,
x

y-axis, see axis in the complex plane
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